

Low Cost Pollution sampling

Justin Harrison

Geography Department, University of Canterbury

Ways to find a LAMAs worst emmissions

Low Cost Samplers: Background

- NES requires monitoring in 'likely' locations
- Low cost methods useful to ID 'likely' sites
- Better spatial information confirm suitability of monitoring sites
- Generally quick to set up
- Generally less problematic
 - Lower noise
 - No need for air conditioning
 - Low power needs
- May not be NES compliant for monitoring

Low Cost Samplers: Options

Airmetrics MiniVol

Ecotech MicroVol

Both are gravimetric methods, capable of measuring TSP, PM₁₀ or PM_{2.5}

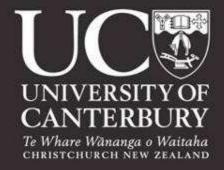
(Negretti head + pump)

TSI Dust Trak

Light scattering – can measure PM_{10} , PM_4 , $PM_{2.5}$, or PM_1

Low Cost Samplers: Limitations

- Filters & batteries changed daily (labour intensive)
- Limited supporting met data
 - MiniVol has no met sensor support
 - MicroVol supports met sensors but only 200pt log
- Low volume methods
 - MiniVol 5L/min
 - MicroVol 3L/min
 - Dust trak 1.7L/min
- Dust Trak calibration issues (therefore mainly suited to looking at relative changes)



Low Cost Samplers: A New Option

The Sample Master 7000

- PM₁₀, PM_{2.5}, or TSP
- 7 'active' inlets plus 1 control inlet
 - (only one active at any given time)
- Met sensors:
 - Wind speed
 - Wind direction
 - Air Temp
 - RH
 - Space for up to 5 additional sensors
- Memory: 62,000 data points
- Programmable
 - Sequential
 - Wind direction controlled
 - Wind speed controlled
 - etc
- Commercial options being looked at

Questions please

Justin Harrison

Geography Department, University of Canterbury