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Executive Summary 

Air pollution from particulates (as PM10) represents a significant problem in many parts of New 

Zealand. Most large urban areas, and many small ones, have exceedences of the National 

Environmental Standard value for 24-hour concentrations of PM10 of 50 µg m-3. 

The high concentrations are due to emissions from various sources, and these need to be reduced. 

However, the relationship between emissions and concentrations is complex, since the weather and 

climate factors that lead to poor dispersion and high concentrations are highly variable. For a given 

level of emissions, some areas that are exposed and windy do not get exceedences, whilst others that 

are sheltered can experience unacceptably high values. 

In order to formulate suitable mitigation strategies it is necessary to understand the relationship 

between the emissions and the weather in order to verify that mitigation actions are working, and to 

assess trends. This cannot be done by examining the monitoring results alone, since a particularly bad 

year might have higher concentrations even though the emissions are going down, or conversely a 

particularly good year might see lower concentrations that are due solely to the weather rather than 

any emissions reduction. 

Objectives 

This research has been undertaken to investigate in detail the complex relationship between emissions, 

weather and PM10 concentrations. The analysis has been conducted on monitoring data from central 

Christchurch over the 8 year period 1999 to 2006. Christchurch was chosen because Environment 

Canterbury has operated an active series of mitigation policies, and it was postulated that the analysis 

could help determine how effective these have been. The objective was not to test these policy options, 

but simply to analyse the monitoring results to increase understanding. The PM10 monitoring data from 

Christchurch are also of high quality and well suited to the analysis. 

A key feature of this research is that it has been undertaken separately, and independently, by three 

separate collaborating groups. The work is part of the Foundation for Research Science and 

Technology programme “Protecting New Zealand's Clean Air”, and represents a combined effort to 

see if any, or each, of the three methods can produce useful results. 

The data required were supplied to each of the groups by Environment Canterbury and has undergone 

a significant degree of quality control. The data used included (1) the hourly values of PM10 

concentration at the Coles Place monitoring site in St Albans, and (2) weather parameters from the 

same site, comprising air temperature (at two heights), wind speed, wind direction, and relative 

humidity. The objective of each of the research groups was to see if any of these parameters, or 

combinations of them, could explain the substantial year-to-year variation found in the basic 

monitoring data (shown in Figure S1), and whether the impact of their variability could be removed 



 

 

 

from inter-annual variations in air pollution concentrations (leaving a time series affected solely by 

changes in emissions). 
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Figure S1: Time series of the 24-hour PM10 concentrations at Coles Place, 1999-2006 (the 

standard value is also shown by the red horizontal line).  

Methodology  

The first approach (by NIWA and Environet) consisted of a “regression tree analysis”. This is a 

sophisticated model that takes all of the weather variables, along with the hourly PM10 concentrations, 

and progressively tries to make the best ‘fit’ to see which of the weather variables can best explain the 

variability in the PM10. 

The second approach (by Endpoint) was a “simple correlation analysis”. This method examines the 

correlation between 24-hour PM10 concentrations and selected weather variables that might influence 

the concentrations, such as wind speed, number of calm periods, and air temperatures.  

The third approach (by Canterbury University) was a “complex regression analysis”. This method uses 

filtering and data transformation techniques to remove the influence of weather variables, and identify 

the underlying concentration variations due to emissions variations. 

The basic results of the three approaches are shown in Figures S2, S3 and S4. 

 



 

 

 

Results 

Results from the three approaches are summarised. 

Regression tree analysis: The regression tree analysis produces a series of relationships (regression 

trees) between the concentrations and various combinations of the weather variables. It then applies a 

range of statistical tests to determine which variables have the strongest influence on the 

concentrations. These variables can then be factored out of the basic concentration time series to 

indicate the longer term trend. The result is shown in Figure S2 for the percentage of winter days that 

experience exceedences of the standard. The results indicate a decreasing trend in frequency of 

exceedences since the peak in 2001. 

Simple correlation analysis: Correlations were examined between PM10 concentrations and a number 

of weather parameters, including wind speed, air temperature, number of cold periods, number of calm 

periods, and temperature profiles. This was only carried out on daily data and focused on the winter 

months only. The results showed that the best relationship occurred between air temperature and 

concentration, shown in Figure S3. The simple correlation analysis indicates that over this 8 year 

period, for a given set of weather conditions, the air pollution concentrations have been decreasing, 

reflecting a lower level of emissions. 
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Figure S2: Regression tree analysis results showing the percentage of similar winter days 
experiencing an exceedence of the 24-hour PM10 standard. 
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Figure S3: Yearly trends in 24-hour average PM10 with respect to average daily temperature 

(1999-2006). The curves fitted to the more recent years tend to be lower, indicating 
lower air pollution for a given air temperature. 

Complex regression analysis: The focus of this part of the analysis was on data from the 5pm to 

midnight period, since this is when most of the air pollution emissions from home heating occur. 

Evening averages of PM10 and weather variables (5 pm – 12 am) were calculated from the hourly data. 

Following careful analysis of the distributions, average PM10 concentrations were transformed using 

the natural logarithm (loge) and wind speed using the square root. The effects of seasonal variations of 

temperature were then removed using a multi-stepped process, and then a multiple linear regression 

performed that removes the influence of the weather variables. The residuals between observed and 

predicted were then used to identify any trends that could not be explained by the weather variations, 

and finally the evening time series was smoothed using a 365 day moving average filter. The results 

are shown in Figure S4 – both the original data set, and the one with the influence of weather variables 

removed. It can be inferred from these results that emissions increased up to 2001/2002, and have 

decreased since. 

Discussion 

Each of these three analytical approaches, using the same input data have produced consistent results. 

It is not surprising that they all show some reduction in PM10 concentrations in central Christchurch, 

since even a cursory examination of the time series data (Figure S1) hints at this. What is more 

relevant is that each has shown (a) a very clear quantification of the influence of the weather and 

climate – with the main determinant being air temperature, and (b) a long term average decrease in 

peak concentrations. Although not analysed in detail, the studies indicate a reduction in the peak 

concentrations over the 8 year period of 3-4% per year that is largely independent of weather factors.  
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Figure S4: Smoothed trend lines of the average 5-12pm PM10 concentrations with the 

influence of weather variables removed. 

It is not possible to make any solid predictions of future pollution concentrations, since factors 

influencing the emissions of PM10 may change. However, if this rate of decrease was linear, and if it 

was to be maintained – and these are both very big ‘ifs ’ – central Christchurch will be closer to (if not 

meeting) the National Environmental Standard by 2013. The certainty of this outcome could be 

improved if this study was repeated every two to three years. 

The research, whilst indicating some promising outcomes, must be interpreted cautiously. The data 

period is not very long and contains a significant degree of variability. A full analysis of the statistical 

significance of the results has not been carried out, and what was completed for the regression tree 

analysis showed that the results frequently did not meet stringent statistical significance criteria. It 

should also be noted that the main focus of research so far has been on controlling for the influence of 

weather variables on average concentrations. However, the National Environmental Standards refer to 

exceedences of specific values over certain time periods. It is the number of these exceedences that 

must be reduced by 2013 – this may, or may not, be related to a reduction in long-term average 

concentrations. The rationale for initially focusing on average values is that it allows an assessment of 

general trends of air pollution concentrations using more robust statistical techniques. Future work on 

analysis of the frequency distribution of hourly and 24-hour average concentrations, and non-

parametric analysis of exceedences will strengthen the results presented here. 

There is also the issue of the unexplained variability in the results, which indicates that there are other 

factors influencing the concentrations that have not been taken account of here. These include the 

influence of temperature inversions, more complex wind flows around the city, and just how often 

people use their solid fuel burners because of non-weather factors (e.g. week verses weekend use), fuel 

prices, special events, and unusual cold snaps, etc. 



 

 

 

Summary 

The PM10 concentrations measured in central Christchurch over the 8 years from 1999-2006 have been 

analysed using three different and independent techniques. Each has shown that differences in the 

weather from year-to-year can explain a significant amount of the variability in measured PM10. The 

strongest relationship is with air temperature (colder weather means higher concentrations), but also 

with wind speed (calmer winds means higher concentrations). Other factors such as inversion strength 

also influence the concentrations. 

Each of the studies suggests that there has been a reduction in PM10 emissions over the period, 

particularly since 2001. Although not a statistically strong result, it can be inferred from the studies 

that a reduction in emissions has averaged about 3-4% per year over 1999 to 2006. 

Any, or all, of these techniques can also be applied to other areas in New Zealand to assess the 

influence of weather on PM10 concentrations, which will be different in different regions. 
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1. Introduction 

1.1. Background 

Assessing trends in air quality has long been problematic for air quality practitioners 

because of the variable impact of meteorology from year-to-year. In urban areas of 

New Zealand, the frequency of calm winds and temperature inversions affects the 

number of high pollution days. Meteorological factors also affect the magnitude of 

concentrations measured.  

Assessing trends in air quality data in New Zealand is also limited in many areas by 

availability of data, with many datasets of limited duration or based on one day in 

three sampling regimes. Notwithstanding these difficulties, monitoring of trends in 

contaminant concentrations is a necessary task for councils to track the effectiveness 

of policy options in managing air quality.  

The importance of evaluating trends in air contaminants, in particular in average 

concentrations of PM10, has increased with the introduction of National Environmental 

Standards (NES) for air quality. The NES specify a limit of 50 µg m-3 (24-hour 

average) for PM10 with only one allowable exceedence per year. They include 

restrictions on councils’ ability to grant resource consents for air discharges in or 

affecting non-complying airsheds. The regulations include restrictions on issuing new 

resource consents from 2013 and a prohibition on granting resource consents for 

significant PM10 discharges if a linear reduction in PM10 concentrations from 2005 to 

2013 is not met. The latter is referred to as the straight-line path (SLiP) (Fisher, 

Kuschel and Mahon, 2006) to compliance by 2013. Thus the ability of regulators to 

track trends in PM10 concentrations between 2005 and 2013 is a very important tool.  

To date there has been limited investment in developing tools which enable regional 

councils to assess the trends in air pollution concentrations with time. This project will 

help plug this knowledge gap and assist regional councils in their task of moving 

toward compliance with the NES. The detailed analysis described in this report has 

been applied to data from Christchurch, as an example, with the objective of 

demonstrating the methodology for use in any region of New Zealand. 
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1.2. Aim and objective 

The aim of this report is to provide regional councils with tools that will enable the use 

of air quality monitoring data to assess: 

• Compliance with a region’s SLiP  

• The effectiveness of a region’s air quality management strategy  

The objective of this study is to develop and compare methods for assessing trends in 

PM10 emissions using monitored PM10 concentrations and meteorological data. 

Christchurch is used as an example because of its well-known air pollution problem 

and available data.  

This objective can be distilled to address trends in emissions that may be of interest to 

environmental regulators:  

• Trends in average PM10 emissions from year to year and more specifically 

from winter to winter. 

• Trends in emissions on days when a PM10 concentration of 50 µg m-3 is being 

exceeded: i.e. year to year trend in the number of NES exceedences. 

• Trends in emissions on days when maximum PM10 concentrations are 

measured: i.e. year to year trends of peak 24-hour pollution events. 

These distilled objectives can be achieved by sequentially refining the analysis of the 

data set to progressively reduce the meteorological influence on PM10 concentrations, 

i.e. consider more tightly defined meteorological events (e.g., a lower “low” wind 

speed classification, or a greater proportion of calm hours). Different approaches to 

evaluating medium to long term trends might be developed depending on which of 

these objectives is deemed most important. 

It should also be noted that the main focus of research so far has been on controlling 

for the influence of weather variables on average concentrations. However, the 

National Environmental Standards refer to exceedences of specific values over certain 

time periods. It is the number of these exceedences that must be reduced – this may, or 

may not, be related to a reduction in long-term average concentrations. The rationale 

for initially focusing on average values is that it allows an assessment of general 

trends of air pollution concentrations using more robust statistical techniques. Future 

work on analysis of the frequency distribution of hourly and 24-hour average 
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concentrations, and non-parametric analysis of exceedences will strengthen the results 

presented here. 

1.3. Multi-pronged approach to problem solving 

Three project groups were established, each with the brief of developing a method to 

control for the influence of weather variables on average PM10 concentrations and to 

use this method to facilitate an assessment of emission trends in Christchurch over the 

period 1999 to 2006. The general approaches were as follows:  

• Group 1:  Regression tree analysis based on hourly and 24-hour PM10 and 

meteorological data. 

• Group 2:  Simple correlation and regression of 24-hour PM10 data and 

weather parameters. 

• Group 3: Complex regression and filtering techniques by extracting the 

influence of specific weather parameters using hourly data. 

The methods and outputs were compared and their effectiveness and the overall 

consistency of the results were considered. Methods and results were also compared 

with a study undertaken by Canesis in 2004 (Environment Canterbury, 2004). The 

outcomes of the Canesis study are summarised in Section 2. 

1.4. Structure and content of the report 

The report is structured to provide easy to follow and concise information. The content 

of the report has been selected to provide relevant and practical guidance to air quality 

resource managers, scientists, analysts and technicians. The report is structured:  

• Background and overview of the study     – Section 1 

• Review of previous investigation into Christchurch PM10 trends  – Section 2 

• Summary of regression tree analysis     – Section 3 

• Summary of simple correlation and regression analysis   – Section 4 

• Summary of complex regression analysis    – Section 5 



  

  

 

Using air quality data to track Progress toward PM10 standards: Case study - Christchurch 1999 – 2006 4 

• Discussion and comparison of results    – Section 6 

• Conclusions, gaps and recommendations for future work  – Section 7 

Details of the method and the full set of results from the regression tree, simple 

correlation and regression, and complex regression analyses are provided in 

Appendices A, B and C respectively. 

1.5. Monitoring site, monitoring methods, datasets and definitions 

The datasets used in the study were provided by Environment Canterbury and 

consisted of all data collected at the Coles Place (St Albans, Christchurch) air quality 

monitoring site. A map and photograph of the Coles Place monitoring site are shown 

in Figure 1.1 and Figure 1.2 respectively. 

 

Figure 1.1: Map showing the location of the Coles Place monitoring site.  

The Coles Place monitoring site was commissioned by Environment Canterbury 

(ECan) in August 1998. It was established as an alternative to the historic Packe St site 

(also located in St Albans), which was situated on a block of land that was to be 

redeveloped. As the Packe St site was able to be used until 2002, a comparison of 

concentrations measured at both sites could be made during the overlap period. 

Concentrations of PM10 varied little between these sites.  

In Christchurch, PM10 has been monitored continuously using the Rupprecht and 

Patashnick Co., Inc. Tapered Element Oscillating Microbalance (TEOM) particulate 

Location of Coles Place 
Air Quality Monitoring 
Site. 
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monitors since 1994. The operation of these instruments is automated and they can be 

interrogated remotely, with data available every ten minutes. This method of 

measurement heats the air sample to minimise water affecting the particle weight, but 

volatile particulate is lost during heating and the total mass of particulate is reduced. 

From 1999, PM10 was monitored with a TEOM operated with an inlet temperature of 

40°C to reduce the loss of the volatile fraction of PM10. A trial was carried out in 2003 

and 2004 whereby a filter dynamic measurement system (FDMS) was integrated with 

a TEOM operating at 30°C (TEOM-FDMS). Concentrations from the TEOM-FDMS 

were found to be very similar to those from the High Volume Sampler. As a result of 

this trial, in 2005 Environment Canterbury adopted the TEOM-FDMS for the purpose 

of reporting PM10 concentrations under the requirements of the National 

Environmental Standards.    

 

Figure 1.2: Photograph of the Coles Place monitoring site.  

To avoid inconsistencies between the analyses, the following definitions were agreed 

between the three project groups:  

• A PM10 exceedence equals a 24-hour average PM10 concentration greater than 

50 µg m-3 when measured from midnight to midnight using the FDMS or data 

adjusted for FDMS equivalence. 
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• The equations for adjusting 24-hour average TEOM data measured at 40°C 

(1999 to 2004) to FDMS equivalence were:  

  TEOM@40>=44, FDMS equivalent = (TEOM@40+3.15)/0.75  

  TEOM@40<44, FDMS equivalent = (TEOM@40-2.23)/0.74 

• 1-hour average TEOM data measured at 40°C (1999-2004) were adjusted to 

FDMS equivalence using the method described in Appendix A.  

• The 24-hour average period from midnight to midnight is calculated from 

hourly data using the hours 01:00 on reporting date to 00:00 on the day 

following the reporting date. 

• The annual peak PM10 concentration is the highest 24-hour average PM10 

concentration measured between January and December for the reporting 

year, adjusted to FDMS equivalence.  

• The annual average PM10 concentration is the average of the 24-hour average 

PM10 concentrations from 1 January to 31 December for the reporting year, 

adjusted to FDMS equivalence. 

The regression tree and complex regression studies used 1-hour average PM10 

concentrations measured at Coles Place over the years 1999 to 2006. The 1999 to 

2003 data were measured using a TEOM operated at 40°C. The 2004 to 2006 data 

were recorded using a TEOM-FDMS. The TEOM(40) data (1999 to 2003) were 

adjusted to be TEOM-FDMS equivalent measurements using the method detailed in 

Appendix A.  

The regression tree and simple correlation studies also used 24-hour average PM10 

concentrations measured at Coles Place over the years 1999 to 2006. The 1999 to 

2004 data were measured using a TEOM operated at 40°C. The 2004 to 2006 data 

were recorded using a TEOM-FDMS. The TEOM(40) data (1999 to 2003) were 

adjusted to be TEOM-FDMS equivalent measurements using the methodology 

established by Environment Canterbury and as detailed in bullet point 2 above. 
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1.6. Limitations of the study 

Emissions of PM10 vary hour-to-hour, day-to-day, month-to-month and year-to-year. 

Separating out the temporal variability in PM10 emissions from the variability 

occurring as a result of different meteorological impacts is a very complex task.  

This study utilised one of the longest and most comprehensive PM10 data sets 

available in New Zealand. A three pronged approach to problem solving was 

employed to ensure the results presented are as robust as practically possible. 

However, there are limitations to this study which introduce some uncertainty into the 

results and prevent a definitive solution being provided. For example despite the data 

record being one of the longest available in New Zealand it is constrained to eight 

years.  

The limitations of the data and methods used in this study are noted in the relevant 

sections of the report and potential enhancements are suggested in the report’s 

conclusions. While all care has been taken to produce robust and useful findings, the 

conclusions presented in the report must be kept in context of the study’s limitations.  

1.7. Trends in PM10 concentrations – Christchurch 1999 to 2006  

Figure 1.3 shows the annual 1-hour average PM10 concentrations as measured at the 

Coles Place monitoring site for 1999 to 2006. Data capture at the site is very good, 

with each year having at least 95% of the available data. A total of approximately 

69,000 hours of data is presented in Figure 1.3. The blue boxes in Figure 1.3 represent 

the inter-quartile range and the white diamond the median value. 

 

Figure 1.3: Trends in hourly average PM10 concentrations at Coles Place, Christchurch 1999-
2006. 
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Figure 1.4 shows the annual 24-hour average PM10 concentrations as measured at the 

Coles Place monitoring site for 1999 to 2006.  

The statistical significance (95% confidence interval) of the year-to-year differences in 

24-hour average PM10 concentrations was investigated using the Kruskel-Wallis test (a 

nonparametric version of the classical one-way ANOVA). Details of the Kruskel-

Wallis (K-W) method and test results are presented in Appendix A.  

 

Figure 1.4: Trends in 24-hourly average PM10 concentrations at Coles Place, Christchurch 1999-
2006.  

The results of the K-W test show that there is a significant increase in both 1-hour and 

24-hour concentrations from 1999 until peak values are reached in 2004. Following 

this peak there is a significant decrease to 2005. The 2006 1-hour and 24-hour 

concentrations are not significantly different from 2005. It is important to note that the 

year-to-year trends demonstrated in Figure 1.3 and Figure 1.4 do not account for the 

year-to-year variation in meteorology. 

2. Previous assessment of trends in Christchurch’s PM10 concentrations 

Canesis Network Ltd were engaged by ECan to assess the effect of its air quality 

management policy of reducing the emission from solid-fuel burning domestic space 

heating devices. To extract information on changing domestic emissions from ECan’s 

ambient air quality data, Canesis employed a new measure of air quality - “qualifying 

evenings”. The results of this study are presented in full in a report entitled An 

Alternative Measure of Air Quality (Environment Canterbury, 2004), while the key 

points from that report are summarised below.  
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2.1. PM10 and meteorological data 

The Canesis report was produced in 2004 and at that time ECan had a PM10 data 

record that ran from 1996 to 2003. There were two inherent issues with the PM10 data 

set, that Canesis had to address before being able to use it as a continuous record. The 

data were recorded: 

• Using TEOMs operating with varying inlet temperatures: 30, 40 and 50 ºC 

• At two different sites: Packe Street (1996 to 1999) and Coles Place (1999 to 

2003). 

To assess the trends in particulate emissions it is highly desirable to have data 

recorded at one site, using one method. Details on how data from the two sites 

measured by TEOMs with different inlet temperatures were synthesised into a 

continuous series are provided in Section 3 of the Canesis report. Very briefly, the 

PM10 data collected by the TEOM at various inlet temperatures were all transformed 

by regression analysis to TEOM(40) equivalent data. The site-to-site differences were 

accounted for by defining relationships of wind speed, temperature and inversion 

strength between the two sites. The Packe Street PM10 data were then mapped to the 

Coles Place site using the site-to-site meteorological relationships.  

The result of these data transformations was to create TEOM(40) equivalent PM10 and 

meteorological data sets that were specific to the Coles Place site for the years 1996 to 

2003.  

2.2. Qualifying evenings 

The meteorological data were then used to define “qualifying evenings” which would  

facilitate the evaluation of the effect of emissions from solid fuel domestic space 

heaters on ambient air quality data. Canesis assumed that emissions from solid fuel 

domestic space heaters exert the most influence on ambient air quality, and are 

therefore most easily measured when there is:  

• A temperature inversion – this traps pollution within a shallow vertical layer. 

• Little wind – limits dispersion (dilution) of pollution 

• Low temperatures (cold) – people light fires and the PM10 in the urban 

atmosphere is emitted mainly from home heating. 
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These three meteorological criteria resulted in Canesis focusing their analysis on data 

monitored between 6pm to midnight over the months April to September. 

Qualifying evenings were defined using three meteorological variables: 

• Temperature measured at 1 m 

• Wind speed  

• Temperature inversion – difference in temperature measured at 1 and 10 

metres above ground level 

A qualifying evening had to have all thee variables lower than “threshold values”. 

However, Canesis found the process of defining threshold values “a bit subjective”. 

They investigated 40 different definitions of qualifying evenings using combinations 

and permutations of threshold values. At the end of this process, threshold values for a 

“reference scenario” were chosen:  

• Temperature measured at 1 m had to be below 9oC 

• Wind speed had to be lower than 1.5 m s-1 

• Temperature inversion (temperature at 1 m minus temperature at 10 m) had to 

be less than -0.3oC 

Only PM10 data from qualifying evenings (when reference scenario thresholds are 

met) were used in the analysis. For qualifying evenings, the hourly PM10 values 

between 6 pm to midnight were used to find a mean and median value. This PM10 

value was taken as representative of that particular evening. By concentrating on the 

representative PM10 values, Canesis suggested it should be possible to extract 

information regarding emissions from solid-fuel domestic heating.  

2.3. Normalising data 

Averaged PM10 over the qualifying evenings was plotted for each year. The scatter of 

data within years was found to be large. Canesis concluded that the large range was 

due in part to varying weather conditions. Scatter within qualifying evenings was 

reduced by normalising PM10 with respect to weather conditions (specifically wind 

speed and temperature measured at 1 m), thus reducing scatter in the data and 

increasing the data’s (trends) significance. Details of the normalisation procedure are 
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provided in Section 4.2 of the Canesis report. Canesis’s normalisation procedure also 

accounts for year-to-year variation in climatic conditions.  

The normalising procedure removed between 5% and 40% of the scatter within each 

year, depending on the thresholds used to define qualifying nights. The causes of the 

remaining scatter are unknown. 

2.4. Results 

Canesis found a “significant” downward trend — via a least squares linear fit — of 

qualifying evening PM10 values over the period 1996 to 2003. Canesis’s findings were 

independent (within reason) of the combination of variables used to define qualifying 

evenings and independent of whether mean or median PM10 values were used in the 

analysis.  

2.5. Conclusions  

Canesis concluded that: 

• Emissions from solid fuel domestic space heaters appear to be reducing by 

between 2 and 6% every year. 

• Measuring the change in emissions from solid fuel domestic space heaters 

using normalised qualifying evening PM10 data was robust, since a 

qualitatively similar downward trend was observed for all reasonable 

definitions of “qualifying” and independent of techniques used (average, 

median, etc.).  

• It is important to understand the causes of the remaining scatter in PM10 

values and further reduce it, as this will further improve confidence in the 

year-to-year downward trend. 

3. Regression tree analysis 

3.1. Introduction 

The method used to analyse the impact of meteorology on PM10 concentrations was to 

allow for statistical groupings of the relationship between PM10 and meteorological 

variables using a regression tree analysis. An overview of the regression tree method 

is provided in Appendix A. A full technical description of the method can be found in 
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De'ath and Fabricius (2000). Very briefly, the regression tree identifies which 

meteorological variables cause the most variation in the PM10 concentrations. The tree 

model then clusters the PM10 data into groups with similar “predictor variables”. In 

the Coles Place PM10 hourly data set the strongest predictor variables included month, 

hour of day, one metre air temperature and wind speed. The PM10 data from a 

particular group (with similar predictor variables) is then broken down into year and 

subjected to trend analysis. The year-to-year differences in PM10 were tested for 

statistical significance using the K-W test. 

3.2. Method  

A four staged approach was used, with the regression trees fitted using Matlab 

(Mathworks version 2006a).  

1. Complete 1-hour average PM10 data set. The entire hourly average PM10 

data (68,985 hours) were clustered using a regression tree. This created groups 

of PM10 data defined by similar meteorological and temporal variables. Within 

each node some of the effect that varying meteorological and temporal 

parameters have on PM10 concentrations had been removed (or controlled). 

The data contained in the group with the highest PM10 values (1604 hours) 

was broken down by year and the year-to-year variation in hourly average 

PM10 concentrations examined.  

2. High concentration hourly average PM10 data: The subset of hourly 

average PM10 data representing high concentrations (from stage 1) were 

subjected to a second and more refined regression tree analysis. This created 

sub-groups within the high pollution subset within which some further effect 

of meteorology on PM10 had been removed. The data contained in a 

combination of these high pollution nodes (1054 hours) were broken down by 

year and the year-to-year variation in hourly average PM10 concentrations 

examined. 

3. Complete 24-hour average PM10 data: The entire 24-hour average PM10 

data set (2781 days) was clustered using a regression tree. The data contained 

in the group with the highest PM10 values (206 days) was broken down by 

year and the year-to-year variation in 24-hour average PM10 concentrations 

examined.  

4. Trends in exceedences of 50 µg m-3: The entire 24-hour average PM10 data 

set (2781 days) was clustered using a regression tree. The top seven 
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meteorological classifications (490 days) were selected to provide a range of 

PM10 concentrations from extreme to marginal (above 45 µg m-3) NES 

exceedences. The data contained within these seven groups were broken down 

by year and the year-to-year trends in the proportion of days producing an 

NES exceedence was examined. 

The 1999-2006 PM10 and meteorological datasets were fairly complete. Less than 2% 

of the hourly data was missing and less than 5% of the daily data was missing. In the 

hourly dataset, if either the PM10 or any of the meteorological data was missing, the 

hour was discarded. In the 24-hour dataset, days were only used if 75% of their hourly 

data was available.  

3.3. PM10 concentration trend analysis 

3.3.1. Identifying and grouping high hourly average PM10 data 

The hourly average PM10 data set contains a large number (68,985 hours) of data and 

has a skewed distribution, with many low values and fewer high values. With a 

skewed data set such as this one, there is a risk that the influence of the fewer high 

value data will be out of proportion to their number. This issue can be dealt with by 

reducing the magnitude of difference between high and low values. A logarithmic 

transformation could have been used. However, to retain the importance of the high 

values, and because tree models do not require a normal distribution, a square root 

transformation was chosen. The transformed data set was then subjected to a 

regression tree analysis. Detailed results from the regression tree analysis can be found 

in Appendix A.  

The main predictor variables used to categorise the PM10 data were temperature, wind 

speed, month of the year, time of day and temperature inversion. Some of these 

predictor variables, such as month of year, temperature and time of day are likely to be 

segregating data based on variations in PM10 emissions.  

The regression tree gave a coefficient of determination (r2) of 0.38. This indicates that 

around 38% of the variation in PM10 concentrations are accounted for by the 

relationships between the predictor variables (both meteorology and temporal) and 

PM10 concentrations described by the regression tree. This shows that the regression 

tree analysis is reducing some of the impact that year to year variation in 

meteorological conditions have on PM10 concentrations.  
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The high pollution group was defined by the following predictor variables: 

temperature measured at 1 m was less than 4.6°C, hours of the day were between 6 pm 

to 3 am and a temperature inversion (warmer temperature at 10 m than at 1 m) was at 

least -1°C. It is important to note that the data contained in the high pollution hourly 

subset were defined by critical meteorological conditions and not by PM10 values. 

However, the 1604 hours of data in the high pollution group identified by the 

regression tree had a mean value just above 144 µg m-3, which is approximately four 

times higher than the next group.  

3.3.2. Time trend analysis on high pollution hourly data 

The high pollution hourly PM10 concentrations subset was disaggregated by year and 

the resulting year-to-year trend is displayed in Figure 3.1. The blue boxes in Figure 

3.1 represent the inter-quartile range and the white diamond the median value. There 

were at least 120 data points for each year. 

 

Figure 3.1: Year-to-year variation in hourly average PM10 concentrations within the high pollution 
sub-group. 

Figure 3.1 shows that within the high pollution group the highest hourly average PM10 

concentrations tended to be recorded in 2000. Between 2000 and 2004 there has been 

a general decrease in concentrations, but the decrease has slowed or even stopped in 

2005 and 2006. The year-to-year differences were explored using the K-W test. The 

results of the K-W analysis show that the decrease in hourly average PM10 

concentrations between 2000 and 2004 is statistically significant (95% confidence 

interval (CI)). The concentrations recorded in 2005 and 2006 were not significantly 

different to those recorded in 2004 (See Figure A3). The decrease in median values of 
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1-hour average PM10 concentrations displayed in Figure 3.1 over the period 1999 to 

2006 is 30 µg m-3. This represents an annual average decrease of 2.3%. 

To assess the effectiveness of the tree model in reducing the meteorological 

variability, a multiple linear model was fit to the high pollution hourly subset of data. 

The percentage variation explainable by meteorological predictors, using a multiple 

linear regression (MLR) model reduced from 29% on the complete dataset to 18% on 

the high pollution subset. This shows that the refining of the dataset has succeeded in 

removing some of the variability in PM10 due to meteorology. More detail is provided 

in Appendix A. 

3.3.3. Identifying and grouping extreme hourly average PM10 data 

In an attempt to remove as much of the PM10 variability due to meteorology as 

possible, a second regression tree analysis was conducted on the untransformed hourly 

average high pollution data group (1604 hours). Data transformation was not 

necessary because of the revised data range and the resulting frequency distribution of 

the high pollution category. The regression tree analysis sub-divided the high pollution 

data group into nine separate meteorological or seasonal groupings.  

The extreme high pollution group identified by the second regression tree contained 

1054 hours of data with a mean value of about 225 µg m-3. The extreme high pollution 

group was defined by the following predictor variables: wind speed less than     1.17 m 

s-1, months April to August. 

3.3.4. Time trend analysis on extreme high pollution data 

The extreme high pollution hourly average PM10 concentrations were disaggregated by 

year (resulting in at least 79 data points for each year). The resulting year-to-year 

trend is displayed in Figure 3.2. 
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Figure 3.2: Year-to-year variation in hourly average PM10 concentrations within the extreme high 
pollution sub-group.  

Figure 3.2 shows a very similar result to that displayed in Figure 3.1. Within the 

extreme high pollution group the highest hourly average PM10 concentrations tended 

to be recorded in 2000. Between 2000 and 2004 there has been a general decrease in 

concentrations, but the decrease has slowed or even stopped in 2005 and 2006. The 

year-to-year differences were explored using the K-W test. The results of the K-W 

analysis show that decrease in hourly average PM10 concentrations between 2000 and 

2004 is statistically significant (95% CI). The concentrations recorded in 2005 and 

2006 were not significantly different to those recorded in 2004 (See Figure A7). The 

decrease in median values of 1-hour average PM10 concentrations displayed in Figure 

3.2 over the period 1999 to 2006 is 62 µg m-3. This represents an annual average 

decrease of 3.1%. 

The regression tree for the high pollution sub-group produced a coefficient of 

determination (r2) of 0.33, compared to 0.38 for the complete data set. This shows that 

the regression tree analysis for the high pollution subgroup is further reducing the 

impact that year-to-year variation in meteorological conditions has on PM10 

concentrations.  

A multiple linear regression model was also fit to the extremely high pollution subset. 

This model concluded that weather variables explained only 9% of the variation in the 

extreme pollution data, and indicates that the further refining of the high pollution 

subset has succeeded in removing more of the variability in PM10 due to meteorology. 

More detail is provided in Appendix A. 



  

  

 

Using air quality data to track Progress toward PM10 standards: Case study - Christchurch 1999 – 2006 17 

3.3.5. Identifying and grouping the high 24-hour average PM 10 data 

The 24-hour average PM10 data set contains 2,781 days of data and has a skewed 

distribution, with many low values and fewer high values. The square root 

transformed data set was subjected to a regression tree analysis. Detailed results from 

the regression tree analysis can be found in Appendix A.  

The main predictor variables used to categorise the 24-hour PM10 data were wind 

speed, month of the year, one metre air temperature, and temperature inversion. Wind 

speed was the most important predictor in the model and contributes just over half of 

the explanatory power of the model. 

The regression tree gave a coefficient of determination (r2) of 0.65. This indicates that 

around 65% of the variation in PM10 concentrations was accounted for by the 

relationships between the predictor variables (both meteorology and temporal) and 

PM10 concentrations described by the regression tree. 

The tree grouped the 24-hour data into 15 nodes, three of which were identified as 

high pollution days. The 3 high pollution groups identified by the regression tree 

contained 206 days of data with a mean value of about 80 µg m-3. The highest 

pollution group had a mean value of 90 µg m-3 and was defined by the following 

predictor variables: wind speeds lower than 1.2 m s-1, winter months (May, June, July 

and August), one metre air temperature less than 8.1°C and a temperature inversion of 

at least -0.1°C. The second and third highest pollution groups had mean values of 80 

and 70 µg m-3 respectively, and were defined by very similar predictor variables, but 

with slightly higher wind speeds. The 3 high pollution groups were aggregated to 

create the high pollution 24-hour subset.  

3.3.6. Time trend analysis of high pollution 24-hour average PM10 concentrations 

The high pollution 24-hour PM10 data were disaggregated by year (resulting in at least 

14 data points per year). The resulting year-to-year trend in 24-hour average PM10 

concentrations is displayed in Figure 3.3. 
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Figure 3.3: Year-to-year variation in 24-hour average PM10 concentrations within the 3 high 
pollution groups.  

Figure 3.3 shows that within the high pollution subset, the highest 24-hour average 

PM10 concentrations tended to be recorded in 2001 and 2002. Between 2002 and 2004 

there has been a general decrease in concentrations, but the decrease has stopped or 

even reversed in 2005 and 2006. The year-to-year differences were explored using the 

K-W test. The results of the K-W analysis show that the decrease in 24-hourly average 

PM10 concentrations between 2001 and 2004 was not statistically significant (95% 

CI). Also, the concentrations recorded in 2005 and 2006 were not significantly 

different to those recorded in 2004. (See Figure A10). The decrease in median values 

of 24-hour average PM10 concentrations displayed in Figure 3.3 over the period 1999 

to 2006 is 11.3 µg m-3. This represents an annual average decrease of 1.6%. 

A second regression tree analysis performed on the high pollution group did not assist 

in further evaluating the impact of meteorology because of the limited number of days 

within this classification (206 data points). However, the percentage variation 

explainable by meteorological predictors, using a MLR (multiple linear regression) 

model reduced from 61% with the complete dataset to 28% with the high pollution 

subset. This shows that the refining of the dataset has succeeded in removing some of 

the variability in PM10 due to meteorology. More detail is shown in Appendix A. 

3.3.7. Trends in exceedences of 50 µg m-3  

PM10 data for the period 1999 to 2006 breaches the NES concentration of 50 µg m-3 

(24-hour average) on 286 of the 2781 sample days (~10%). The majority of these 

exceedences (69%) occurred within the three high pollution groups analysed in 
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Section 3.3.5. These groups typically represent meteorological conditions during 

which the worst case PM10 concentrations occur.  

To assess the changes in the number of NES exceedences associated with a reduction 

in PM10 emissions requires the capture of less extreme meteorological conditions, i.e., 

those days currently or previously resulting in concentrations around 50 µg m-3. To 

increase the capture of these “marginal days”, additional groups from the regression 

tree analysis undertaken in Section 3.3.5 were added. The top seven meteorological 

classifications from the regression tree were selected as being representative of 

marginal days. This combination of groups contained 490 days (18% of the days) and 

contained 253 exceedences (88% of the total exceedences recorded). This grouping of 

the 24-hour average PM10 data (extreme and marginal days) was disaggregated by year 

and the percentage of days greater than 50 µg m-3 was calculated for each year. Figure 

3.4 shows the year-to-year variation of the percentage of marginal days with PM10 

concentrations of greater than 50 µg m-3 (24-hour average). 

Figure 3.4 indicates that in 1999 around 60% of the PM10 concentrations on marginal 

days resulted in NES breaches compared with just less than 40% during 2006. The 

data displayed in Figure 3.4 suggest that over the period 1999 to 2006 there has been 

an annual average decrease of 2.8% in the chance that a marginal day will produce an 

exceedence of the PM10 NES. The most probable explanation for this is a decrease in 

PM10 emissions. 

3.4. Discussion 

The approach used in this section to evaluate trends in PM10 concentrations with time 

involved three steps: (1) grouping PM10 data based on similar predictor variables 

(meteorological conditions, month of year and time of day), (2) disaggregation of 

these groups into year of monitoring, and (3) analysis of the resulting year-to-year 

trend. Trend analyses were undertaken using both 1-hour and 24-hour concentrations.  
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Figure 3.4: Year-to-year variation of the percentage of marginal days with PM10 concentrations of 
greater than 50 µg m-3 (24-hour average). 

The regression tree analysis identified that the highest 1-hour PM10 concentrations 

occurred most frequently when wind speed was 1 m s-1 or less, one metre air 

temperatures were below 2°C, a temperature inversion existed, the time was between 

18:00 to 03:00 and the seasons were late autumn and winter. The predictor variables 

objectively identified by the regression tree very closely matched those that would 

intuitively be expected.  

From the almost 70,000 hours of 1-hour average PM10 data recorded between 1999 

and 2006, a high pollution sub-set was identified. This high pollution group contained 

approximately 1600 hours of data (2.3% of total) with a mean value of 144 µg m-3. An 

additional analysis of the high pollution data set was undertaken to produce an 

extreme high pollution group. This extreme high pollution group contained 

approximately 1000 hours of data (1.5% of total) with a mean value of 225 µg m-3. 

Trend analysis was undertaken on both the high and extremely high pollution groups, 

and both groups of data showed very similar trends. The highest 1-hour average PM10 

concentrations tended to be recorded in 2000. Between 2000 and 2004 there has been 

a significant decrease in concentrations, but the decrease has slowed or even stopped 

in 2005 and 2006.  

These results suggest that there was a general decrease in PM10 emissions over the 

period 1999 to 2004, but the decrease has slowed or perhaps even halted in more 

recent years. However, it is possible that in these later years, some of the impact of 

meteorology is not accounted for by the relationships described by the regression 

trees. It should also be remembered that not all effects of meteorology will have been 

removed and the effect of the remaining meteorology is difficult to quantify. 
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The regression tree analysis found the highest 24-hour PM10 concentrations to occur 

most frequently when: wind speeds were lower than 1 m s-1, winter months, ground 

temperature was less than 8°C and a temperature inversion existed. From the almost 

3,000 days of PM10 data recorded over 1999 to 2006 a high pollution sub-set was 

identified. This high pollution group contained approximately 200 hours of data (7% 

of total) with a mean value of approximately 80 µg m-3. Trend analysis was 

undertaken of this high pollution group. The highest 24-hour average PM10 

concentrations tended to be recorded in 2001. Between 2001 and 2004 there has been 

a general decrease in concentrations, but the decrease has slowed or even stopped in 

2005 and 2006. This is a very similar trend to that observed in the 1-hour average data, 

although in this example the difference in concentrations between 2001 and 2004 was 

not statistically significant. The trends observed in the 24-hour average PM10 

concentrations suggest that emissions of PM10 over the period 2001 to 2004 may have 

decreased, but not significantly so.  

An initial reaction to the 24-hour average result could be that it is inconsistent with 

that observed in the 1-hour average data. However the emissions from home heating 

do not occur consistently over a 24-hour period. Most of the heating activity (and 

emissions) occurs in the evening (4pm to 10pm) with a smaller, but still important, 

activity period between 06:00 and 10:00. Therefore the effect of any home heating 

emission reduction strategy is going to be most strongly observed on an hour-to-hour 

time scale. When the time scale of observations is increased from 1-hourly to 24-hour 

the total amount of PM10 reduction remains the same, but its effect will be smoothed 

over a longer period and therefore relatively small and harder to identify. So it is 

possible that a significant reduction in PM10 emissions is occurring, although 

anticipated reduction in 24-hour average PM10 concentrations is not observed as 

strongly as anticipated due to the effect of the longer period averaging period.  

Another very significant variable impacting on the 24-hour average approach is the 

simplification of the meteorological parameters (24-hour averages) used in the model. 

In particular, it is not helpful to use 24-hour averages of wind speed and temperature 

inversions because of the significant variability in these parameters on days when 

PM10 concentrations are elevated. High pollution days in Christchurch are 

characterised by strong negative temperature gradients, cold temperatures and low 

wind speeds during the evening. During the daytime, however, the temperatures are 

warmer than average, temperature gradients more strongly positive than average, and 

wind speeds can be higher. Thus the extremes in meteorology observed during the 

evening are not well reflected in a 24-hour average. Refining the meteorological 

variables used in the analysis of trends in 24-hour average PM10 could significantly 

improve this analysis.  
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Decrease in the proportion of “marginal days” with PM10 concentrations that just 

exceed the NES, provides further evidence that PM10 emissions were decreasing over 

the period in consideration. This decrease in the proportion of days that exceed the 

NES is only apparent within a broader range of meteorological data classifications 

(rather than worst case). This is because the PM10 concentrations within the worst case 

meteorological classification are typically much higher than 50 µg m-3 and even 

relatively large reductions in PM10 concentrations are unlikely to take them below the 

NES. The proportion of NES exceedences within the high pollution group of data is 

therefore only likely to change once significant emissions reductions are achieved.  

The most relevant trend to monitor, in terms of meeting the NES, is that associated 

with changes in 24-hour average PM10 concentrations under worst case meteorological 

conditions. In essence these trends can be observed by considering the upper quartile 

data in Figure 3.3. As indicated above, tracking this group of data relative to the 

number or proportion of exceedences does not illustrate reductions in concentrations 

because of the absolute difference between existing peak concentrations and 50 µg m-

3. It is possible, however, that this will be a useful tool for illustrating trends in 

exceedences at some stage in the future, when a greater reduction in concentrations 

has been achieved.   

Summary of Key Findings: Regression Tree Analysis 

This analysis has used all of the hourly measurements of air pollution and weather from the Coles Place 
monitoring site over the 8 years from 1999 to 2006 (70,000 hours). The air pollution measurements are then all 
examined in groups to see which ones occurred under similar weather. In this way, a ‘tree’ of relationships or 
‘predictor variables’ is built up. These trees may have many variables in them, and each can be assigned a level 
of importance. In other words, the method identifies which weather variables are most important for explaining 
the amount of air pollution. Once these relationships have been discovered from the regression trees, they can be 
used to say something about the underlying trends in emissions.  

The highest concentrations tended to occur during winter (May, June, July and August) evenings, when the air 
was still and cold. A group of high air pollution measurements (about 2000 hours) that occurred under very 
similar conditions were identified. These high pollution measurements were then clustered according to the year 
within which they were measured. Finally, a year-to-year comparison was undertaken to see if there had been 
any changes over time.  

This study suggests that the highest air pollution measurements were recorded in 2000. Between 2000 and 2004 
there appears to have been a significant decrease in air pollution concentrations. However, the concentrations 
measured in 2005 and 2006 are very similar to those in 2004. The decrease in concentrations seems to have 
slowed or stopped in recent years. The analysis suggests that emissions in 2000 and 2001 were the highest and 
they then decreased over 2002, 2003 and 2004, but appear to have levelled off in 2005 and 2006. There is an 
overall decrease through the 8 year period though. 
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4. Simple correlation analysis 

4.1. Introduction 

There is an obvious and direct relationship between the weather and the occurrence of 

air pollution. This is strong in Christchurch, but occurs to some extent throughout the 

country. The most direct relationships are with winds (….when it’s windy air pollution 

emissions get blown away…), and with temperature (…when it’s cold people burn 

more in home heating appliances, emit more, and air pollution emissions increase….). 

However, there are also more subtle relationships, such as the occurrence of inversions 

– which often coincide with cold temperatures and calm periods. This part of the 

research examines the relationship between air pollution (as PM10) and weather 

variables using simple correlation methods. It attempts to establish the relationship 

between the key weather variables and occurrences of high pollution levels, in order to 

understand the year-to-year variability in pollution that is seen in the monitoring. 

This section is a summary, with the highlights of the results and more detailed analysis 

given in Appendix B. 

4.2. Method  

The methodology is straightforward and simple. The basic PM10 and weather data 

series from the central Christchurch monitoring site for the period 1999 to 2006 has 

been used. This has been cleaned, corrected and analysed on an hour by hour basis for 

the whole period (as described in Appendix B). Since high levels of air pollution in 

Christchurch generally only occur in winter, only the winter data have been used 

(May, June, July and August). The analysis has also been conducted just using the 

core winter months of June and July. 

Simple correlations were made between the ambient pollution data of interest (peak 

concentrations of PM10 and frequency of exceedences of the PM10 standard) and the 

weather variables (average daily temperatures and occurrences of calm wind periods). 

These were then analysed for each year in the 8-year study period to assess 

relationships and trends. 

The relationship between the weather variables and pollution was then analysed to 

assess how this had been changing over the study period, and see if any inferences 

could be made about trends in Christchurch’s air pollution. 
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4.3. Results 

Table 4.1 shows a summary of the basic cross-correlations. It shows a high level of 

correlation between core winter average near-surface air temperature and average 

PM10 concentrations (-0.79), and between the average hours of calms and 

concentration (-0.75). There is a weaker correlation with 10 m air temperatures (-

0.63), and with average 24-hour wind speed (-0.54). There is little correlation with the 

low level temperature difference (-0.26), and none with humidity (0.07). 

Table 4.1:  Correlation of average 24-hour PM10 with various 24-hour weather conditions for the 
months of June and July 1999-2006.  

June 
and July 
of: 

Average 
PM10 (Coles 

Place) 
(�g m -3) 

Average 
temp. at 

1m 
(ºC) 

Average 
temp. at 

10m 
(ºC) 

Average 
temp. 

difference 
(1m-10m) 

(ºC) 

Wind 
speed 
(ms -1) 

Average 
hours of 

calms 
(/day) 

Average 
percent of 

calm 
winds (%) 

Average 
RH 
(%) 

1999 58.0 6.7 7.9 -1.2 2.2 13.0 54.1% 85.1 

2000 38.3 8.4 9.2 -0.8 2.3 11.5 48.1% 74.1 

2001 64.8 5.6 6.2 -0.6 1.8 15.5 64.4% 72.0 

2002 48.7 6.4 6.5 -0.1 1.8 14.0 58.4% 79.1 

2003 49.9 6.8 7.4 -0.6 1.9 14.0 58.5% 77.0 

2004 51.0 6.9 7.6 -0.7 2.0 14.0 58.5% 75.7 

2005 46.2 6.9 7.0 -0.1 2.0 13.8 57.4% 78.1 

2006 50.8 5.7 na na 1.9 na na na 

Correlation  -0.79 -0.63 -0.26 -0.54 0.75 0.75 0.07 

 

The correlation between PM10 and temperatures and calms is not independent. Cold 

temperatures and calm winds can themselves be correlated, although not necessarily 

completely equivalent in producing a high PM10 values. For instance, there could be 

cold windy days with low PM10, or relatively warm calm days with high PM10. The 

correlation with vertical temperature difference (being a crude indicator of inversions) 

is not at all strong (-0.26). Temperature inversions are transient in nature, and vary in 

depth, which has a significant effect on the ambient PM10 concentration on an hour by 

hour basis. These transient events are not able to be resolved and accounted for when 

using 24-hour averages, as has been done here. 

Figure 4.1 shows all of the daily PM10 concentrations plotted against average 

temperature and frequency of calms. This shows that high pollution (here indicated by 

days where the standard was exceeded) generally occur only when the temperature is 

low, and the percentage of calms is high. There were no exceedences when the 

average temperature was above 14°C and very few when there was less than 10-12 
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hours of calms per day (here a ‘calm’ is defined as an average hourly wind speed of 

less than 2.0 m s-1). 
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Figure 4.1: Comparison of monitored days and days which exceeded the NES for Coles Pl (1999-

2006) using average daily temperature and percentage of calms. 

The number of ‘cold’ days (with temperature < 5 ºC) varies significantly from a low of 

13 in 2000 to a high of 42 in 2001 (Figure 4.2). The average PM10 concentration for 

this subset of days also differs from year-to-year, with some hint of a downward trend. 
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Figure 4.2: Average PM10 concentrations on days with an average temperature below 5ºC, for all 
months 1999-2006. 
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The pattern is similar using data from ‘cool’ days, as shown in Figure 4.3. Here 

instead of using days with < 5 ºC, the days of 6-9 ºC were arbitrarily selected. There is 

a similar variability in the number of days (44 to 75), but less in the average PM10 

concentration, again with some indication of a slight downward trend. This result 

suggests that there is some defined relationship between the weather and air pollution 

that can be adjusted for temperature variation so that emissions trends can be assessed. 
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Figure 4.3: Average PM10 concentrations on days with an average temperature between 6 and 9 

ºC, for all months 1999-2006. 

4.3.1. Correlation model 

For the winters of each of the 8 years covered, the daily average temperature and the 

PM10 concentrations were plotted together, as shown in Figure 4.4. A logarithmic 

curve was fitted to the relationship. Despite the large scatter, a trend in the form of this 

relationship emerges. That is, for a given temperature, the amount of pollution 

associated with that temperature appears to be less in more recent years. 

This analysis was also conducted for the average temperature over the June/July 

period, and for the frequency of calms. The results are similar, but not presented here 

(see Appendix B, Figure B12). 
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Figure 4.4: Yearly trends in PM10 with respect to average daily temperature (1999-2006). 

4.4. Discussion 

This analysis shows some level of correlation between daily weather averages and 

PM10, but it is by no means strong. As noted earlier, the relationship is likely to be 

influenced by other weather factors that have not been analysed – such as inversions. 

Good temperature inversion data are frequently not available for most cities and towns 

of New Zealand. Other factors that may influence the relationship are secondary 

factors (such as variations in the price or availability of fuel) and more subtle weather 

features (such the length of cold periods, where longer periods of cold weather may 

cause people to burn more than would be expected by the temperatures alone). 

Given the results shown, it is tempting to conclude that they provide evidence of a 

systemic reduction in PM10 emissions in the Christchurch airshed. The data may well 

indicate this, but the results need to be interpreted with caution, since (a) there is 

substantial variability and the statistical significance of the relationship has not been 

determined, (b) the weather relationships are crude, omitting important factors such as 

inversion extent and strength, (c) some secondary drivers have not been accounted for, 

such as fuel prices or particularly cold, or warm, periods. 
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Summary of Key Findings: Simple Correlation Analysis 

This analysis shows that much of the year-to-year variability in the air pollution occurring in 
Christchurch in winter-time can be explained by simple weather variables. The strongest relationship 
occurs with temperature – the winters with colder average temperatures experience higher air 
pollution. This fairly obvious result occurs consistently and for a range of temperatures. Higher air 
pollution also occurs in winters that have more periods of light winds or calms.  

The year-to-year variation in these weather parameters can mask any long term trends in emissions. 
When variations in the temperature and calms are partially accounted for, there are indications that the 
emissions in Christchurch have decreased over the period 1999 to 2006, resulting in lower pollution 
concentrations for a given weather pattern. However, this result is not strong, and the trend occurs 
over several years with any particular year capable of having higher or lower pollution levels than the 
previous years, due to the high year-to-year variability in the weather. 

 

5. Complex regression analysis 

5.1. Introduction 

The methodology used in the complex regression analysis is to some extent based on 

the method outlined by Wise and Comrie (2005). The mentioned paper investigated 

meteorologically adjusted trends of PM10, ozone and a number of meteorological 

variables in the southwest of the United States of America. The Kolmogorov-

Zurbenko filter (KZ filter) used in their paper was first introduced to investigations of 

ambient air quality by Rao and Zurbenko (1994) to effectively separate different 

frequencies within a time series. Numerous studies have subsequently confirmed its 

usefulness in achieving various objectives within air quality research (e.g. Hogrefe et. 

al. 2003; Ibarra-Berastegi et. al. 2001; Porter et. al. 2001; Yang and Miller 2002; Anh, 

Duc and Azzi 1997; Eskridge et al. 1997). 

In this study, however, the above mentioned method (Wise and Comrie 2005) needed 

to be modified to some extent. The application of multiple linear regression and 

subsequent residual analysis using the KZ filter assumes constant emissions, which, in 

the case of PM10 emissions in Christchurch is not appropriate. The preliminary 

approximation of constant emissions is described below. 

5.2. Method  

A PM10 time series (FDMS equivalent; see Appendix A for details on data 

preparation) from Coles Place, St Albans (Appendix C, Section 3) was analysed in 

order to evaluate meteorological influences over the period 1999–2006, inclusive. 

PM10 concentrations were averaged on a daily basis for the hours between 5 pm and 12 

am as it was found to be the main peak time for concentrations (see Figure 5.1).  
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Figure 5.1: Mean diurnal PM10 concentrations for Coles Place, St Albans (1999–2006). Values 
shown are hourly averages ending on the hour given. 

Wind speed, 1m air temperature and the vertical temperature difference between 1m 

and 10m, all obtained from the same site as the PM10 concentrations, were chosen to 

be representative of meteorological conditions. Wind speed and temperature 

difference represent the intensity of horizontal and vertical mixing within the 

atmospheric boundary layer, respectively. These meteorological variables were 

averaged over the same period as PM10. 

The identified diurnal maximum of concentrations in the evening hours reflects the 

fact that by far the largest contribution to PM10 concentrations measured in 

Christchurch originates from home heating devices such as log burners. This makes 

emissions very variable as they are highly dependent on temperature behaviour and 

can therefore not be considered as constant over time (in comparison to emissions 

from traffic which show only little variation over the course of a year). This is 

underlined by the fact that PM10 exceedences only occur in winter. In other words, air 

temperature is a key cause of PM10 emissions in Christchurch, whereas wind speed 

and temperature difference modify concentrations. 

Following the methodology described by Wise and Comrie (2005), multiple linear 

regression analysis was performed to identify (and subsequently remove) 

meteorological influences from the dataset. This approach, however, assumes that 

emissions are approximately constant over time and that resulting concentrations are 
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being modified only by weather conditions. As outlined above, PM10 concentrations in 

Christchurch cannot be considered constant due to the influence of temperature. 

Therefore, this dependency had to be removed prior to the regression.  

According to Ott (1990) pollutant concentrations generally show log normality and 

this was evident in this case. Therefore, PM10 concentrations were transformed using 

the natural logarithm. Afterwards, each year was split into a winter and a summer 

season (April–September and October–March, respectively). For each season of each 

year, evening PM10 concentrations were regressed against temperature and the 

calculated dependency was corrected using the following formula, retaining the 

maximum variation by recalculating the observed residuals to represent deviations 

from a zero trend line (i.e. the overall mean of PM10): 

corr. loge PM10 = (((loge PM – (a + b · TEMP)) / 2) · √3)) + avg. PM 

with corr. loge PM = natural logarithm of temperature-corrected PM10 concentration, 

loge PM = natural logarithm of raw PM10 concentrations, TEMP = 1m air temperature, 

avg. PM = mean raw evening PM10 concentration for each season, a = intercept of the 

calculated regression and b = slope of the calculated regression. After this, the dataset 

was rejoined into a continuous time series. 

Figure 5.2 shows the inverse relationship between loge PM and TEMP for the whole 

time series before the correction was applied. The shape of the cluster of points does 

not indicate a linear dependency between the two variables. It was found that this is 

due to the fact that the observed negative correlation was significantly higher during 

the winter seasons (i.e. at lower temperatures), while some years even showed a 

positive relationship in the summer seasons (Appendix C, Section 1). 

This also led to a residual weak negative correlation after the corrected seasons were 

rejoined to create a complete time series (Appendix C, Section 2), which was removed 

in the same way as outlined above for individual seasons and resulted in a completely 

temperature independent time series of PM10 concentrations (Figure 5.3). 

This temperature corrected data set was then taken as the input time series for the 

subsequent multiple linear regression analysis to identify, quantify and subsequently 

remove meteorological influences on evening PM10 concentrations in Christchurch 

(Appendix C, Section 4). 
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Figure 5.2: The relationship between 1 m air temperature and the natural logarithm of PM10 

recorded between 5 pm and 12 am at Coles Place, St. Albans. 
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Figure 5.3: PM10 concentrations recorded between 5 pm and 12 am at Coles Place, St. Albans 
showing no dependency on temperature. 

To remove the remaining meteorological influences of horizontal and vertical mixing 

conditions, multiple linear regression analysis was performed. The corrected PM10 

concentrations were selected as the dependent variable and regressed against the 
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independent variables of wind speed (which was transformed using the square root to 

approximate a normal distribution) and temperature difference. The regression was 

able to explain about 20% of the remaining variance in the PM10 concentrations (r2 = 

0.193). 

Residual analysis was performed to investigate the variation in concentrations which 

remained unexplained by the above mentioned meteorological influences. The 

residuals can be considered as revealing variations within PM10 concentrations due to 

factors other than meteorology and thus represent a better approximation of the 

behaviour of emissions. 

To make the residuals comparable to concentrations they were added to the overall 

mean of the raw (but temperature corrected) measurements. This step is necessary as 

residuals, by definition, only represent deviations from a calculated series of values – 

in this case the calculated series of optimal predictions of PM10 concentrations based 

on variations in wind speed and temperature difference – and therefore fluctuate 

around a zero line (i.e. their sum equals zero). 

This new dataset can now be understood as adjusted PM10 concentrations, where 

meteorological influences, namely 1 m air temperature, wind speed and presence and 

strength of a temperature inversion have been removed (Appendix C, Section 5). 

5.3. Results 

A simple moving average filter (based on the Kolmogorov-Zurbenko or KZ filter) was 

applied to both the raw and the adjusted PM10 data set. A window size of 365 days 

(evenings) was chosen to average out seasonal fluctuations and two repeated iterations 

were run to facilitate interpretation of the trend. The result of the first iteration is 

referred to as KZ365,1 and the second as KZ365,2. Each iteration truncates half the size of 

the chosen window length at each end of the time series. So, the first filter run 

effectively cuts one year off the time series and the second run two years. 

The comparison of the resulting trends is shown in Figure 5.4. The dotted lines show 

smoothed hourly PM10 concentrations where seasonal fluctuations have been removed 

(KZ365,1). The solid lines are further smoothed (removing fluctuations smaller than 1.4 

years) to aid interpretation of the long term behaviour of PM10 concentrations 

(KZ365,2). 
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Figure 5.4: Comparison of the trend of raw (grey) and adjusted (black) hourly PM10 
concentrations recorded between 5 pm and 12 am at Coles Place, St Albans. The dates 
indicate the beginning of the year. 

The raw trend for the evening hours follows the trend observed in daily averages (for 

comparison refer to Aberkane, Harvey and Webb 2005) reflecting general winter 

conditions (primarily influenced by variations in mean temperatures throughout the 

winter months). This becomes particularly evident when comparing average 

concentrations for 2000 and 2001, reflecting mild and cold winter conditions 

respectively. 

The adjusted trend suggests an increase in PM10 emissions with a peak in late 2001 to 

early 2002. Afterwards, emissions appear to decrease steadily until autumn 2006. 

Thereafter, KZ365,1 indicates a slight increase towards winter 2006, but fluctuations are 

apparent throughout the entire trend line and no solid conclusions should be drawn 

from this. 

Figure 5.5 provides a summary of the adjusted time series plotted as a box plot 

showing mean concentrations along with their standard deviation for each year. 

Similar to Figure 5.4, a decrease in emissions is observed after a peak in 2001. It can 

be assumed that 2001 was a rather exceptional year as indicated by the wide span of 

the standard deviation. Since 2002, variability within each year has decreased and 

somewhat stabilised in recent years (with 2006 again indicating a slight increase). A 

similar trend is shown Appendix C, Section 6 (showing the median and quartiles for 

each year), where the span of the upper quartile with respect to the median is 

somewhat wider than the lower quartile in earlier years compared to recent years. This 
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is especially true for the winter months May to August as shown in Appendix C 

(Section 7). However, the trends in medians for both the overall yearly data, as well as 

the winter subsets, are rather different from the trends depicted by the mean values 

(Figure 5.5 and Appendix C, Section 8). For the median values, no clear trend can be 

established for the winter months. The whole year data show a delay in the peak in 

emissions, which does not occur until 2003. The trends in the mean values for both 

winter and whole year data (Figure 5.5 and Appendix C, Section 8) show similar 

patterns and furthermore, follow the trend described by the moving average filter 

(Figure 5.4). 
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Figure 5.5: Box plot of the final adjusted annual times series of PM10 concentrations showing the 
mean and standard deviation for each year. 

Nevertheless, the trend lines presented only cover a period of 6 to 7 years (KZ365,2 and 

KZ365,1 respectively) and it needs to be emphasised that a robust interpretation of long 

term behaviour is inappropriate considering this short time span. No clear evidence 

can be found to explain the behaviour of emissions as described by the adjusted trend, 

but it may reflect the effectiveness of Environment Canterbury’s air quality 

management strategy. 

5.4. Discussion 

The analysis described above revealed a trend for PM10 emissions which peaks in 

2001/2002 and shows a decrease since then. This, however, does not agree entirely 

with Environment Canterbury’s emissions inventories, which identify a peak in 

emissions in 1999 and a decrease in 2002. Furthermore, as described earlier, the 
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statistical approach used in this study assumes constant emissions which are 

subsequently modified by meteorological conditions. The creation of a time series that 

is independent of temperature behaviour (which can be interpreted as a rough proxy 

for seasonality) certainly supports the approximation of emissions being constant in 

time. However, it is a matter of fact that the use of home heating devices is limited to 

the cold half of the year in Christchurch and therefore, emissions will always be 

subject to seasonal variation. As a result of this, any analysis of the complete time 

series will always be limited in its accuracy. The utilisation of a running mean filter 

with a window that is larger than the seasonal fluctuations certainly reduces the impact 

of this uncertainty. Nevertheless, a level of uncertainty about the accuracy of the 

results due to the methodology remains. A quantification of the expected bias seems 

impossible at this stage, although further modification of the analysis might provide 

means to overcome this problem. However, for the time being, the results presented 

can be considered as a good approximation of emission behaviour in the vicinity of 

Coles Place derived from a time series of average evening PM10 concentrations. 

Summary of Key Findings: Complex Regression Analysis 

A meteorologically adjusted time series of evening PM10 concentrations was created which is 
independent of temperature, as well as of vertical and horizontal mixing. This adjusted data set can be 
seen as a representation of PM10 emissions as the above mentioned meteorological influences have 
been removed. The adjusted trend suggests an increase in emissions with a peak in late 2001 to early 
2002, while they appear to decrease steadily thereafter. 

6. Discussions 

The PM10 concentrations measured in central Christchurch over the 8 years from 

1999-2006 have been analysed using three different and independent techniques. Each 

has shown that differences in the weather from year-to-year can explain a significant 

amount of the variability in measured PM10. The strongest relationship is with air 

temperature (colder weather means higher concentrations), but also with wind speed 

(calmer winds means higher concentrations). Other factors such as inversion strength 

also influence the concentrations.  

The data and resources required to undertake each of three analytical techniques used 

in this study are compared in Table 6.1. 

Despite the different techniques used, each of the analyses indicates that there has 

been a reduction in PM10 emissions over the period, particularly since 2001. Although 

not a statistically strong result, the studies also indicate that this reduction has been of 

the order of 3-4% per year over 1999 to 2006. Although these results cover a different 
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period than that considered (1996 to 2003) in the Canesis investigation (Environment 

Canterbury, 2004), the results are broadly consistent.  

Table 6.1: Comparison of the three analytical techniques used in this study 

Analysis Technique Input data required Resources ne eded to undertake 
Analysis 

Regression Tree 1-hour average PM10, hour of day and 
meteorological data 

24-hour average PM10 and 
meteorological data 

Knowledge of advanced statistical 
methods and access to advanced 
statistical software.  

Simple Correlation 24-hour average PM10 and 
meteorological data 

Knowledge of basic statistical methods 
and access to basic statistical software. 

Complex Regression 1-hour average PM10 and 
meteorological data for 18:00 to 0:00 
each day 

Knowledge of advanced statistical 
methods and access to advanced 
statistical software. 

 

7. Conclusion 

7.1. Achievement of the aim and objective of the study 

The aim of this project was to provide regional councils with tools which will enable 

the use of air quality monitoring data to assess: 

• Compliance with the region’s SLiP  

• The effectiveness of the region’s air quality management strategy  

The objective of this study is to develop and compare methods for assessing trends in 

PM10 emissions using monitored PM10 concentrations and meteorological data. The 

trends teased out from the monitoring data can be compared to the region’s SLiP and 

the effectiveness of the region’s air quality management strategy assessed. 

Each of these three analyses used the same input data and produced consistent results. 

Although not analysed in detail, the studies all indicate a reduction in the peak over 

the 8 year period of around 3-4% per year. Each analysis showed (a) a very clear 

quantification of the influence of the weather and climate – with the main determinant 

being air temperature, and (b) a long term average decrease in peak concentrations.  

The research, whilst indicating some promising outcomes, must be interpreted 

cautiously. The data period is not very long and contains a significant degree of 
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variability. A full analysis of the statistical significance of the all results has not been 

carried out, and what was completed for the regression tree analysis showed that the 

results frequently did not meet stringent statistical significance criteria. 

There is also the issue of the unexplained variability in the results, which indicates that 

there are other factors influencing the concentrations that have not been taken account 

of here. These include the influence of temperature inversions, more complex wind 

flows around the city, and just how often people use their solid fuel burners because of 

non-weather factors, such as fuel prices, special events, unusual cold snaps, etc. 

Given the positive outcomes it is concluded that both the aim and objective of the 

study have been met. 

7.2. Potential enhancements 

The attempts to achieve the aims of this study have highlighted a number of gaps in 

the available data. These are in three broad areas – air pollution data, weather and 

climate data, and data on social and economic drivers. 

7.2.1. Air pollution data 

The PM10 monitoring record from Christchurch is relatively good, being probably the 

best in New Zealand – which is one of the main reasons for selecting Christchurch as 

the study area. It is of good quality, with few gaps, and well verified. Analyses of this 

nature always desire longer periods, but this cannot be regarded as a shortfall.  

A potential drawback is the areal representativeness of the PM10 data. The Coles Place 

site in St Albans is located just north of the city centre and reasonably representative 

of central Christchurch, but there may be variations across the city that need to be 

better understood. For instance, although the weather over Christchurch is reasonably 

uniform (compared to most other large urban centres in New Zealand), there are 

features that are known to affect air pollution, such as drainage flows off the Port Hills 

and Canterbury Plains, and coastal sea breeze effects. These are not fully reflected in 

the PM10 data for Coles Place, and may be important factors in understanding the 

relationships between weather and air pollution, and their spatial variation. An 

equivalent record in terms of quality and length is needed for 2-3 other sites in 

Christchurch. 

A second issue is that this research has focused mostly on evaluating trends in PM10 

concentration, rather than the frequency of PM10 exceedences. It is the latter that are 
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the prime focus of the National Environmental Standards (NES). It is therefore not yet 

possible to provide definitive guidance to regional councils regarding their ability to 

meet the requirements of the NES by 2013. This will be the focus of continued work 

which will investigate the nature of the frequency distributions of the air quality data 

and their significance for prediction of future numbers of NES exceedences. 

7.2.2. Weather and climate data 

Again, the basic meteorological data are good and generally representative of the 

weather and climate of Christchurch. However, throughout the research, one major 

limiting factor has been identified – the lack of suitable data on inversions. 

The occurrence, height and strength of inversions have a very strong influence on air 

pollution concentrations because of their effect on vertical mixing. For instance, in a 

simplistic way, if X kilograms of PM10 emissions is mixed into an inversion capped 

layer 50m deep, with calm winds, then it will produce a concentration of Y µg m-3. 

However, should this mixed layer be only 25m deep (and with all other factors 

remaining constant), then the resulting concentration will be 2 times Y µg m-3. The 

real atmosphere is not this simple, but the point is made that inversion characteristics 

can have a dramatic effect on pollution concentrations. 

Data on inversions are not available for the simple reason that it is very hard to obtain 

them. The basic methodology is to have a tall tower that is fitted with temperature 

sensors every few metres. Such facilities are difficult to arrange and expensive to 

maintain. Some spot data can be obtained using tethered or free rising balloons, as has 

been done many times in Christchurch (McKendry et al. 2004, Corsmeier et al. 2006). 

However, whilst these methods give excellent data on specific events, they cannot be 

sustained through every night during winter, for several years. 

Some benefit may be gained by incorporating the effect of a time lag between 

meteorological variables (such as temperature) and pollution: i.e. the temperature of 

the preceding hour may be a better predictor of air pollution than the temperature for 

the same hour in which the pollution was monitored. 

Remote sensing devices (such as acoustic sounders and lidars) have good data 

capabilities, but these have problems of their own, often in terms of cost to maintain 

them over the required periods. 

Some attempt has been made to use the differential temperature measurements 

available, based on sensors at 1m and 10m above the ground. This has not proved to 
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be a very strong indicator, and does not correlate well with 24-hour average pollution 

concentrations (which is not surprising). More sophisticated methods might show a 

better relationship, but these have been beyond the scope of this study. 

In addition, there may be other weather factors that have not been studied here that 

influence pollution concentrations, such as more detailed airflow and temperature 

features around the city.  

7.2.3. Social and economic data 

Finally, it is obvious that there will be variable emissions over Christchurch during 

any particular period because of social and economic factors. These might include 

particular types of weather – such as long very cold snaps – that cause people to burn 

more than just the temperature alone might indicate. They might also include factors 

such as the price or availability of fuel – particularly electricity – that mean people use 

more wood. This occurred dramatically in 1992 during major power outages, resulting 

in the highest ever air pollution year. There might also be other subtle factors that have 

been shown in some overseas studies to affect the amount of air pollution 

independently of the weather – such as special public events, school holidays, flu 

epidemics, wild fires, and so on. 

7.3. Ongoing and future research 

When undertaking trend analyses with data sets which contain a relatively low number 

of years (say less than 10), there is a risk that any long term trend contained in the data 

series will be obscured by single event aberration and/or short term changes. In trend 

analyses, data sets covering longer periods of time are likely to provide results that are 

more robust and contain greater certainty. In this project, eight years of data (1999 to 

2006) were analysed. The results presented in this report would benefit from being 

revisited biannually when an additional two years of data become available. This 

repeated review process would add certainty to the direction and magnitude of the 

trends in PM10 concentration illustrated in this report. 

As mentioned in Section 7.2.1, it should also be noted that the main focus of research 

so far has been on controlling for the influence of weather variables on average 

concentrations. However, the National Environmental Standards refer to exceedences 

of specific values over certain time periods. It is the number of these exceedences that 

must be reduced by 2013 – this may, or may not, be related to a reduction in long-term 

average concentrations. The rationale for initially focusing on average values is that it 

allows an assessment of general trends of air pollution concentrations using more 
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robust statistical techniques. Future work on analysis of the frequency distribution of 

hourly and 24-hour average concentrations, and non-parametric analysis of 

exceedences will strengthen the results presented here. 

It would be of interest and value to expand this study to locations beyond 

Christchurch. The methods used in this study work best in locations that have simple 

source profiles (one dominant polluter), non-complex terrain and uncomplicated 

meteorology. However, the single most important factor which will determine the 

success of an investigation such as this, is the availability of a long term PM10 data set. 

Given these criteria, target locations for expanding the study could include Timaru and 

Nelson. Informative results may also be obtained from Wellington and the Hutt 

Valley. Preliminary investigations into Auckland, which has a relatively complex 

source profile and varied terrain, suggest that undertaking a trend analysis of PM10 

concentrations in this region would be more of a challenge.  
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Appendix A: Detailed report on the regression tree analysis 

Al. Calibration of hourly TEOM(40) PM 10 to TEOM-FDMS equivalent 

The original correlation between the unadjusted hourly TEOM(40) data and the 

TEOM-FDMS data is high (R2 = 0.89), but there is a tendency for TEOM(40) to 

under-measure by about 18% at higher concentrations. To correct for this, a regression 

tree model was fit to predict the TEOM(40) adjustment required based on the 

TEOM(40) measurement itself, the time of year and other meteorological predictors. 

This resulted in a tree defining seven data groups and additive adjustments to the raw 

TEOM(40) data.  

Because of the large range of TEOM(40) values in one of the groups, it was felt that a 

multiplication factor would be more appropriate for this group than an additive 

adjustment, so this change was made. Table A1 lists the final seven adjustment rules. 

To adjust a TEOM(40) value, the temperature at 1m and the month of the 

measurement are required. Read down the ‘criteria’ column until a matching criterion 

is found, then apply the adjustment in the ‘adjustment’ column.  

Table A1: Adjustment rules for one hour average TEOM(40) data. 

Data group name Criteria Adjustment 

Very high PM  TEOM(40) >= 77  multiply by 1.23 

Summer, low PM  TEOM(40) < 18 and December-March  add 0.96 

Non-summer, cool at 1m  TEOM(40) < 77, April-November, temp1m < 3.5  add 14.36 

Summer, mid PM  TEOM(40) between 18 and 40, December-March  add -5.69 

Summer, high PM  TEOM(40) between 40 and 77, December-March  add -24.77 

April-May or August-November, 
warm at 1m  

TEOM(40) < 77, temp1m > 3.5 April-May or August-
November 

 add 4.66 

June-July, but warm at 1m  TEOM(40) < 77, temp1m > 3.5, June-July  add 8.91 

 

The adjustment has improved the correlation from R2 = 0.89 to 0.93. More 

importantly, the RMA best-fit line now under-measures only slightly by 1-3% at 

higher values compared to a larger under-measurement of 18% before adjustment. 
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A2 Kruskal-Wallis test for significant differences 

The Kruskal-Wallis (K-W) test can be used to test for significant differences between 

groups of skewed data, like pollution data. The test does not assume that the data 

come from a normal distribution; in fact it converts all values to ranks before analysis, 

thereby creating a uniform distribution. The K-W routine tests the hypothesis that all 

groups have the same median rank against the alternative that the median ranks are 

different. It returns a p-value for the likelihood that the observed differences could 

occur purely by chance. If more than two groups are being tested, a particular p value 

can be set and the significance of the difference between different groups can be 

displayed graphically. 

A3 Regression trees method 

Meteorology is known to have a large effect on atmospheric PM10, so it is difficult to 

look for long term trends in PM10 without considering and controlling for the effect of 

meteorology. Regression trees were used because unlike linear regression models, 

they can handle both continuous and categorical predictors in the same model. They 

also do not assume linear relationships, instead fitting threshold relationships to the 

data. Interactions between predictors are also handled automatically. 

The regression trees were fit using Matlab (Mathworks version 2006a). Because of the 

skewed nature of PM10 concentration data, the PM10 values were transformed if 

necessary before the model was fit. The following 7 predictors were allowed in each 

model: temperature at 1m, temperature at 10m, temperature difference (1m to 10m), 

wind speed, solar radiation, (all 1-hour average values), month (categorical predictor), 

hour of day (categorical predictor). 

The tree model creates classes grouping similar PM10 values. The class membership 

criteria are specified using the (mostly meteorological) predictor data. The tree can be 

pruned back or left at full size. Either way it produces a number of meteorologically 

specified classes, with relevance to PM10. More meaningful annual comparisons could 

then be made between the PM10 values within each meteorological class. 
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A4 Hourly analysis 

A4.1  Regression trees based on complete hourly dataset to create high pollution 

  subsets 

Figure A1 shows a graphical representation of the regression tree performed on the 

full hourly dataset. The tree can be interpreted by starting with all the data in the top 

group. Any data with temperature at 1m < 4.6oC (cold) follow the left branch and all 

other data go right. The subset of (cold) data in the left hand group is now split on 

hour. Any cold data between the hours of 3 am and 6 pm go left and all other (cold) 

data go right. The other splits can be read in a similar way. The 6 final groups are 

shown with the average (square root) PM10 values and the group number. 

Group 4 Group 7

Group 8
Group 9

Group 10
Group 11

 

Figure A1:  Regression tree separating PM10 concentrations into different meteorological and 
seasonal classifications. Blue dots mark final data groupings and are labelled with 
average square root of PM10 concentration and group number. The red ellipse marks 
the group designated as high pollution. 

Temperature at 1m was the most important predictor in this model, contributing about 

45% to the explanatory power of the model. Hour was next, contributing about 20%. 

Figure A2 shows the range of PM10 values within each of the 6 groups produced by 

the tree. Group 8 (calm night time conditions with temperature inversion) contained 

most of the high PM10 values and will be termed the ‘high pollution’ subset. Most of 

the lowest PM10 concentrations are recorded in groups 7 and 10, characterised by 

warmer conditions occurring either near summer or with wind.  
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Figure A2: Distribution of PM10 within the groups produced by the tree model. Horizontal red 
lines inside the blue boxes indicate the median, red circles indicate the mean, and blue 
boxes encompass 50% of the data in each group. Black whiskers extend to 1.5 times 
the inter-quartile range and data outside that are marked by red crosses. The large red 
ellipse marks the group designated as high pollution. 

A4.2 Significance of time trend results based on the high pollution hourly dataset 

 

Figure 3.1 in the main report shows PM10 trends through time for data in the high 

hourly pollution subset (group 8). Figure A3 shows the significance of these 

differences using the Kruskal-Wallis significance test. Differences are significant 

where the bars do not overlap, i.e. the reduction in pollution between 2001 and 2003 is 

significant, but that between 2001 and 2002 is not. 

 

Figure A3:  Significance of annual differences in the high pollution hourly subset (group 8) using 
the Kruskal-Wallis test. The white diamonds represent the median concentration of 
group 8. 
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In order to further reduce the amount of meteorological variability in this subset of 

data, a multiple linear model was fit to the data. This model showed that 18% of the 

variability within the high pollution subset could still be accounted for by 

meteorological and seasonal effects. The model can be used to predict a pollution 

value based solely on the meteorological predictor variables. It was then possible to 

compare the actual pollution with the meteorologically-predicted value. In theory, if 

emissions are higher, the observed pollution value is likely to be higher than that 

predicted using meteorology, and vice-versa. Figure A4 shows that the median actual 

pollution was higher than the predicted pollution in 1999-2002, but that the actual and 

predicted values have been quite similar since then. This suggests a potential decrease 

in PM10 emissions from 2001 to 2004. 

 

Figure A4: Comparison of actual pollution with meteorologically-predicted pollution (using a 
multiple linear regression model) based on a subset of high pollution hourly data 
(group 8). 

A4.3 Regression tree based on high pollution hourly data to create extremely high 

pollution subset 

Figure A5 shows the regression tree fit to the high pollution hourly data. 

Figure A6 shows the range of PM10 values within each of the groups produced by the 

tree. Groups 3 and 4 contain most of the low pollution data and were separated early 

in the tree. Data from all groups except 3 and 4 will be termed the ‘extremely high 

pollution’ subset.  
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Group 4

Group 17

Group 3

Group 8

Group 12

Group 13

Group 16

Group 15

Group 14

 

Figure A5: Regression tree fit to high pollution hourly data. Blue dots mark final data groupings 
and are labelled with average PM10 concentration and group number. The red ellipse 
marks the groups designated as extremely high pollution. 

 

 

Figure A6: Distribution of hourly PM10 within the groups produced by the tree model. Horizontal 
red lines within the blue boxes indicate the median, red circles indicate the mean, and 
blue boxes encompass 50% of the data in each group. Black whiskers extend to 1.5 
times the inter-quartile range and data outside that are marked by red crosses. The 
large red ellipse marks the group designated as extremely high pollution. 
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A4.4 Significance of time trend results based on extreme high pollution hourly data 

Figure 3.2 in the main report shows hourly PM10 trends through time for data in the 

extremely high pollution groups. Figure A7 shows the significance of these 

differences using the Kruskal-Wallis significance test.  

 

Figure A7: Significance of differences in hourly PM10 in the high pollution group (14) using 
Kruskal-Wallis test.  

A multiple linear regression model was fit to this subset of data to see how much 

additional meteorological variability could be removed. The model could explain only 

9% of the variability in the dataset, although it is not likely that all of the remaining 

91% of variability can be attributed to emissions.  

A5 24-hour analysis 

A5.1  Regression tree on complete 24-hour dataset to create high pollution subset 

Figure A8 shows the regression tree fit to the complete 24-hour dataset. Wind speed is 

the most important predictor in the model and contributes just over half of the 

explanatory power of the model. Nearly all of the October-March data fall into groups 

18 and 19 (low pollution groups).  

Figure A9 shows the range of PM10 values within each of the groups produced by the 

tree. The groups containing most of the highest pollution data are groups 16 and 17 

(calm, cold days with temperature inversion). Group 26 also represents fairly high 

pollution. It contains slightly windier winter days that are cold, with a temperature 

inversion of at least -0.3 degrees. 
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Node 18Node 16 Node 19
Node 17

Node 26

 

Figure A8: Regression tree fit to full daily dataset. Blue dots mark final data groupings and are 
labelled with average square root of PM10 concentration. Groups of interest are also 
labelled with the group number. The red circles mark the groups designated as high 
pollution. 
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Figure A9: Distribution of PM10 within the groups produced by the tree model. Horizontal red 
lines within the blue boxes indicate the median, red circles indicate the mean, blue 
boxes encompass 50% of the data in each group. Black whiskers extend to 1.5 times 
the inter-quartile range and data outside that are marked by red crosses. The ellipses 
mark the groups designated as high pollution. 

A5.2  Significance of time trend results for high pollution 24-hour data 

Figure 3.1 in the main report shows PM10 trends through time for high pollution daily 

data. Figure A10 shows the significance of these differences using the Kruskal-Wallis 

significance test.  

 

Figure A10: Significance of differences in high pollution daily PM10 using the Kruskal-Wallis test. 
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In order to further reduce the amount of meteorological variability in this subset of 

data, a multiple linear model was fit to the data. Figure A11 shows that the median 

actual pollution was higher than the predicted pollution in 2000-2001, and lower than 

predicted from 2002 to 2004. 

 

Figure A11: Comparison of actual pollution with meteorologically-predicted pollution (using a 
multiple linear regression model) for a subset of high pollution daily data. 

Figure A11 can be compared with Figure 3.3 in the main report. Removing this extra 

28% of variance has resulted in the positions of the maximum and minimum moving 

back by two years. The shape of the graphs are somewhat similar with an early rise 

and fall (peaking in 2000-2002, falling to a minimum in 2002-2004), followed by a 

very slight rise up till 2006. 
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Appendix B: Detailed report on the simple correlation analysis of PM10 

    and weather 

B1 Objective 

The objective of this component of the research is to examine the relationships 

between PM10 concentrations and various weather factors in Christchurch. The trends 

in ambient concentrations are assessed by examining the weather and climate 

conditions over the study period, allowing inferences to be made about trends in 

emissions.   

B2 Summary Conclusions 

This is a simplified graphical correlation analysis, examining straightforward 

relationships between temperature, wind and monitored PM10 concentrations over the 

years 1999 to 2006, which shows that: 

The relationship between weather factors and the winter time PM10 concentrations 

appears to show concentrations have been decreasing over the 7 year period (but not 

uniformly) 

This suggests that emissions from wood burners in the area around the Coles Place 

monitoring site in winter have been decreasing – i.e. for a given weather condition the 

resulting PM10 concentration is not as great in recent years as it was in the past. 

The data and analysis techniques are too noisy to quantify this further at this stage. 

B3 Background 

Weather conditions affect pollutant concentrations both through changing people’s 

behaviour (i.e. “...is it cold enough to fire up the burner…?”) and also by changing the 

rate of dispersion (i.e. “…is it windy enough to blow the smoke away..?”). For 

example, cold days have a direct effect on home heating emissions, so that it is usually 

assumed that the colder the day, the more domestic home heating emissions occur. 

There is some evidence that the effect is more subtle than this rather obvious one, as 

some people may not start their burners until there have been two or three consecutive 

cold days. Also, different people have different temperature thresholds, and finally, 

the ‘type’ of cold weather may influence heating decisions, with still clear day-time 
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cold weather being less of a trigger than cold wet nights. So temperature alone may 

not be very highly correlated with emissions beyond the obvious general seasonal 

factors. 

Other weather conditions such as wind speed affect pollutant concentrations. High 

winds increase dispersion, while long periods of light winds can result in decreased 

dispersion and elevated pollutant levels.  

A more subtle and difficult to analyse factor is the occurrence of inversion layers. 

These are due to complex meteorological factors and their extent or frequency is not 

measured directly. Their details are inferred from various other measurements, and 

they can have a strong influence on the trapping of air pollution. 

The study conducted here attempts to elicit primary relationships between PM10 and 

the simple weather variables of temperature and wind speed. It does not include an 

analysis of the secondary factors – such as periods of cold weather that may induce 

people to use their home heating appliances more. 

B4 Methodology 

Creating one continuous data set from 1999 to 2006 necessitated combining data from 

various monitors (Table B1). It is acknowledged that combining these data sets 

introduces variability. However, the analysis below focuses more on long-term trends 

in PM10 concentrations and the impact of weather variability upon them. The data set 

analysed combines monitoring data from a TEOM@401 and two FDMS TEOM@30 

monitors. In general, FDMS TEOM data were preferred, although earlier monitoring 

years 1999 to 2002 consisted of only TEOM@40 data. To account for the tendency for 

TEOM@40 monitors to under-measure at higher concentrations, and to achieve 

consistence between the monitors, a correction factor was applied, as follows: if the 

TEOM@40 measured 44 µg m-3 or higher, the FDMS equivalent = (TEOM@40 + 

3.15) /.75, and if TEOM@40 measured less than 44 µg m-3, the FDMS equivalent = 

(TEOM@40 -2.23) /.74. This correction factor was recommended by Environment 

Canterbury. 

                                                      
1 These figures refer to the inlet temperature of the TEOM (tapered element oscillating 
microbalance) instrument used to measure ambient PM10. The filter is heated to prevent 
moisture entering the instrument and can be set between 30°C and 50°C. Heating significantly 
above ambient temperatures tends to evaporate some of the volatile component of the PM10, 
producing lower values that need to be corrected to agree with the reference method. The 
FDMS is a recent adaptation that splits the flow, drying and heating to 30°C and chilling to 
capture volatiles otherwise lost. Concentrations from this method agree well with the reference 
method.  
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Table B1: Overview of PM10 monitoring at Coles Place, St. Albans, Christchurch. 

Year PM10 data sets 1 Data set used for analysis 2 

1999 TEOM@40°   Corrected TEOM@40° 

2000 TEOM@40°   Corrected TEOM@40° 

2001 TEOM@40°   Corrected TEOM@40° 

2002 TEOM@40°   Corrected TEOM@40° 

2003 TEOM@40° FDMS TEOM@30°  Primary: FDMS TEOM@30 
Secondary: Corrected TEOM@40° 

2004 TEOM@40° FDMS TEOM@30° #11 FDMS TEOM@30° #12 P rimary: FDMS #11 TEOM@30 
Secondary: : FDMS #12 TEOM@30 
Tertiary: Corrected TEOM@40° 

2005 TEOM@40° FDMS TEOM@30° #11 FDMS TEOM@30° #12 P rimary: FDMS #11 TEOM@30 
Secondary: : FDMS #12 TEOM@30 
Tertiary: Corrected TEOM@40° 

2006 FDMS TEOM@30°   FDMS TEOM@30° 

1 Datasets do not always represent complete or near complete years. Monitoring is often intermittent.  
2 Datasets were often combined to account for missing data. Primary denotes the main dataset used. Secondary and Tertiary 

data was used when primary data were not available. 

B5 Note on Calms 

This study makes reference to calm winds or periods of calm winds. For the purposes 

of this study calm winds were designated as those with hourly averages less than 2 m 

s-1. This is a relatively arbitrary designation, although it is based on the data plotted in 

Figures B1 and B2 which show the 1-hour PM10 concentration versus the hourly wind 

speed. As can be seen from the figures, wind conditions less than 2 m s-1 result in 

reduced dispersion, leading to a higher number of hours with elevated concentrations 

of PM10.  

 
Figure B1:  1-hour PM10 versus hourly wind speed (0-10 m s-1) at Coles Place, 1999-2005. 
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Figure B2:  1-hour PM10 versus hourly wind speed focusing on lower range of wind speeds (0-3 m 

s-1) at Coles Place, 1999-2005.   

Clearly, there is a range of choices that can be made when defining calms. The 

accepted meteorological definition is 0.5 m s-1. This may be acceptable for air 

pollution analysis, but from the data in Figure B3 it is seen that a significant number 

of high pollution hours can occur at wind speeds above this. By the time the wind 

speed is 2.5 m s-1 or greater, the concentrations definitely decrease. The value of 2.0 m 

s-1 was chosen to encapsulate all the high pollution concentration hours 

(concentrations above 200 µg m-3) in the data set. Similar results are obtained with 

choices of 1.5, 1.0, or 0.5 m s-1, although the amount of data is less, and therefore the 

statistical results less significant. 
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Figure B3:  Historical 24 hour PM10 record for Christchurch using data from Coles Place (1999-

2006).  
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B6  Results 

Simple correlations and plotted relationships are used to determine the interaction 

between PM10 and weather conditions in Christchurch by examining PM10 data 

monitored at Coles Place from 1999 to 2006. The basic corrected hourly data series is 

shown in Figure B4, while Table B2 shows the correlation of various winter weather 

conditions with the average PM10 for June and July. Temperature and the number of 

calm winds show the highest correlation. 
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Figure B4:  Annual average PM10 concentration (µg m-3) and annual peak PM10 concentration (µg 

m-3) for Coles Place (1999-2006).  

Table B2: Correlation of average 24-hour PM10 with various weather conditions for the months 
of June and July.  

June and 
July of: 

Average 
PM10 

(Coles) 
(µµµµg m -3) 

Average 
temp  at 

1m 
(ºC) 

Average 
temp at 

10m 
(ºC) 

Average 
temp 

difference 
(1m-10m) 

(ºC) 

Wind 
speed 
(m s -1) 

Average 
hours of 

calms 
(/day) 

Average 
percent 
of calm 
winds 

(%) 

Average 
RH 
(%) 

1999 58.0 6.7 7.9 -1.2 2.2 13.0 54.1% 85.1 

2000 38.3 8.4 9.2 -0.8 2.3 11.5 48.1% 74.1 

2001 64.8 5.6 6.2 -0.6 1.8 15.5 64.4% 72.0 

2002 48.7 6.4 6.5 -0.1 1.8 14.0 58.4% 79.1 

2003 49.9 6.8 7.4 -0.6 1.9 14.0 58.5% 77.0 

2004 51.0 6.9 7.6 -0.7 2.0 14.0 58.5% 75.7 

2005 46.2 6.9 7.0 -0.1 2.0 13.8 57.4% 78.1 

2006 50.8 5.7 na na 1.9 na na na 

Correlation  -0.79 -0.63 -0.26 -0.54 0.75 0.75 0.07 
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The correlation between PM10 and temperatures and calms is not independent. Cold 

temperatures and calm winds can themselves be correlated, although not necessarily 

completely equivalent in producing high PM10 values. For instance, there could be 

cold windy days with low PM10, or relatively warm calm days with high PM10. The 

correlation with vertical temperature difference (being a crude indicator of inversions) 

is not at all strong (-0.26). Temperature inversions are transient in nature, and vary in 

depth, which has a significant effect on the ambient PM10 concentration on an hour by 

hour basis. These transient events are not able to be resolved and accounted for when 

using 24-hour averages, as has been done here. 

Figure B4shows an overall downward trend in both annual average and annual peak 

PM10 concentration despite year-to-year fluctuations. To some extent these 

fluctuations may be due to emissions reductions, although actual trends cannot be 

determined without examining weather conditions. 

Figure B5 shows that the majority of exceedences occur on cold days with calm winds 

(The results do not change significantly if 1.5 or 2.5 m s-1 are used to define ‘calm’, 

but they do if lesser or higher speeds are used). Few exceedences occur on days when 

calm wind periods occur for less than 50% of the time. Also, most exceedences occur 

when the average daily temperature is below 10ºC. 
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Figure B5: Comparison of monitored days and days which exceeded the NES for Coles Pl (1999-

2005) using average daily temperature and percentage of calms.  

Figure B6 shows the time of year and temperature at which exceedences occurred for 

2001. The data show that the majority of exceedences occur during the winter months. 

In order to determine why some cold, winter days do not result in an exceedence, an 
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additional figure is presented to examine wind conditions during June and July. Figure 

B7 shows that the magnitude of the 24-hour PM10 concentration is closely related to 

the hours of calm wind periods experienced that day. A similar pattern exits for all the 

years in the study (not shown). 
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Figure B6: Monitored days and exceedence days for 2001. The red box indicates the dates chosen 
for further analysis as seen in the figure below.  
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Figure B7: Correlation of calm wind conditions and 24-hour PM10 concentrations for exceedence 
days, 1999 to 2006.  
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There is not a particularly strong relationship between temperature and the average 

number of calms winds. However, 2001 experienced both the coldest temperature and 

the highest number of hours of calm winds. This year also experienced the second 

highest PM10 concentrations (only just lower than 1999). 

B6.1 Trends 

Figures B8, B9 and B10 show days with similar weather conditions throughout the 8 

years studied, providing a simplified way to ‘de-trend’ the PM10. Here the ‘weather’ is 

determined only by air temperature and wind speed. Ideally, it should include other 

parameters that are known to affect pollution concentrations – particularly the 

presence and strength of temperature inversions. However, data on inversions are not 

readily available, as this is a difficult parameter to measure. Some further work is 

being undertaken using limited temperature profile data as an indicator of possible 

inversions. 

0

20

40

60

80

100

1999 2000 2001 2002 2003 2004 2005 2006

A
ve

ra
ge

 d
ai

ly
 P

M
10

 /n
um

be
r o

f d
ay

s

Average PM10 on days with temperature <5°C

No. of days with average temperature <5°C

 

Figure B8:  Trend analysis: average PM10 concentrations on days with an average temperature 
below 5ºC.  
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Figure B9:  Trend analysis: average PM10 concentrations on days with an average temperature 
between 3 and 6ºC.  
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Figure B10: Trend analysis: average PM10 concentrations on days with an average temperature 
between 6 and 9ºC.  
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B6.2 Trends for PM10 on cold days 

Each of Figures B8, B9 and B10 shows that for all the choices of the definition of 

“cold’ (being <5 ºC, 3-6 ºC, and 6-9ºC) there is a discernable trend for lower average 

PM10 concentrations in the more recent years. These temperature choices are arbitrary. 

This is not uniform from year-to-year and cannot be used to make any prediction 

about what might occur in future years. It does show a level of correlation that implies 

emissions are reducing, but does not discount the possibility that more subtle weather 

features have an influence. 

B6.3 Trends for exceedences 

Figure B11 shows a simple correlation between the number of exceedence days and 

the average temperature for the two winter months of June and July. In the most 

general way, colder winters tend to have a higher number of exceedences (for 

instance, 2001 was particularly cold and had the highest number of exceedences, 

conversely 2000 was relatively warm and had a lower number of exceedences). 

However, 2006 was as cold as 2001 (on average) but had far fewer exceedences. This 

may be due to emissions reductions, or may be the result of a more subtle feature in 

the weather that is not explained by average temperature. 
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Figure B11: Winter-time exceedences and average temperatures. 
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B7 Correlation Model 

Figures B12, B13 and B14 show daily PM10 concentrations as a function of 

temperature and calms for each year in the study. Figure B14 does not contain data for 

2006 as it was unavailable at the time the analysis was undertaken. These curves are 

basic logarithmic fits to the relationship between daily temperature and daily PM10 

concentration. They indicate in a simple way the expectation of a particular 

concentration occurring on a given day of a particular temperature. The logarithmic fit 

was chosen (as opposed to linear or polynomial) as it gives a better fit to the data. The 

data show a large degree of scatter and must be interpreted with caution. 

0

50

100

150

200

0 5 10 15 20 25

Average daily temperature (°C)

24
-h

ou
r 

P
M

1
0 

(µ
g/

m
3
)

1999 2000 2001 2002 2003
2004 2005 2006

 
Figure B12:  All days plotted, showing annual differences in the relationship between PM10 and 

temperature using logarithmic regression.  

 

Figure B13:  Only June and July, showing annual differences in the relationship between PM10 and 
temperature using logarithmic regression. 
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Figure B14:  All days with daily calms 75% or greater (16 hours), showing annual differences in 
the relationship between PM10 and temperature using logarithmic regression  

These results indicate that, overall, recent years such as 2003, 2004 and 2005 have 

experienced lower PM10 concentrations than earlier years during conditions of similar 

temperatures, or similar frequencies of calm periods. 

Although these figures are very noisy, with a relatively large scatter in the data, they 

do indicate a decreasing slope in the relationship between PM10 and temperature 

(especially when the coincident occurrence of calms is also taken into account). In 

other words, for a given set of weather conditions (winter temperatures essentially), 

the PM10 concentration seems to be lower in more recent years (e.g. 2004 and 2005) 

than in previous years (e.g. 1999, 2000) suggesting a lower level of emissions in the 

more recent past. This is analysed in more detail in the next section. 

B7.1 Correlation overview 

The results presented so far are difficult to interpret due to the large scatter in the data.  

The data were transformed in various ways in order to test the fit of various 

relationships between parameters. The best fit was obtained with a logarithmic 

transformation of the concentrations (shown in Figure B15). 

These relationships are explored further, where the coefficients of the logarithmic 

relationships are plotted for each year. These are simply called “Factor A” and “Factor 

B”, from the logarithmic fits of the form:- 

24-hour PM10 = -A x Ln(weather parameter) + B 
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Figure B15:  All days plotted, showing annual differences in the relationship between PM10 and 
temperature using logarithmic regression, with the concentrations plotted on a 
logarithmic axis.  

The nature of the correlations are summarised further in Figures B16, B17 and B18. 

These reflect the form of the relationships plotted in Figures B12, B13 and B14.  

0

50

100

150

1999 2000 2001 2002 2003 2004 2005 2006 2007

Factor A

Factor B

 
Figure B16:  Summary of the regression relationship between winter temperatures and average 

PM10, where A and B are parameters from the logarithmic equation described 
previously. 
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Figure B17:  Summary of the regression relationship between June and July temperatures and 

average PM10, where A and B are parameters from the logarithmic equation described 
previously. 
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Figure B18: Summary of the regression relationship between calm periods and average PM10, 

where A and B are parameters from the logarithmic equation described previously. 
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These figures thus highlight the way the relationship between emissions and 

concentrations has changed from year-to-year, under given weather scenarios (based 

on air temperatures and number of calm periods). 

This is not a realistic relationship, but a simplistic way of describing these curves. 

“Factor A” and “Factor B” do not represent physical variables, since they are simply 

descriptors of an arbitrary transformation of the relationship between daily 

temperatures and averaged concentrations. Alternative fits could have been used, such 

as: 

24-hour PM10 = A x exp(B x average daily temperature) 

This is also a reasonably good fit to the data and can produce slightly more realistic 

parameters, with “A” being an estimate of the PM10 concentration at 0°C and “B” 

being the change in temperature leading to a 1/e reduction in PM10 concentration. The 

simplistic logarithmic factors do, however, give some indication of the way this 

relationship has been changing from year-to-year over the period, shown in Figure 

B18.  

Both factors have been decreasing, but with some degree of year-to-year variability, as 

yet unexplained. It is important to note that these factors do not represent any 

particular geophysical parameters – they are statistical descriptors of the data 

analysed. This analysis was also conducted for the average temperature over the whole 

winter period, and for the frequency of calms. 

There is considerable year-to-year variation. The 2001 year stands out, having been a 

particularly cold year with a higher than normal amount of calm periods. The 

relationship is strongest with average temperature. It is likely that some of the 

variation in these figures is due to weather variables that have not been included in the 

analysis – such as inversions. 

B7.2 Summary 

The key findings of the analysis are: 

• PM10 concentrations are strongly dependent on the season, with 24-hour 

concentrations peaking in winter with values in excess of twice the standard 

(summer time PM10 concentrations rarely exceed 20 µg m-3 and almost never 

exceed 30 µg m-3). 
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• Over the winter months of June and July from 1999 to 2006, exceedence of 

the 50 µg m-3 standard occurred on 42% of all days on average 

• Ambient air temperature exhibits the strongest correlation with the number of 

exceedences, with the next strongest correlation being that of the number of 

periods of calms winds. Colder weather generally results in higher emissions, 

and higher concentrations. 

• Wintertime PM10 concentrations are heavily dependent on the wind 

conditions, with more calm periods generally resulting in higher 

concentrations. 

• The relationship between emissions and concentrations for given temperature 

conditions appears to have been weakening between 1999 and 2006, 

suggesting that emissions may have been reducing over this period. 

When some of the year-to-year weather variability is accounted for, there is some 

indication that emissions have been reducing over the last few years. 

This has been a straightforward graphical analysis with simple correlation 

calculations. It is important to understand the complex nature of the relationships 

being analysed through visual inspection, as well as using advanced statistical 

techniques. A natural extension to the analysis is to now use more powerful statistical 

techniques in order to (a) quantify in more detail the relationships discovered, and (b) 

give an idea of the statistical significance of the relationship.  

B8 Discussion 

This analysis shows some level of correlation between weather and PM10, but it is by 

no means strong. As noted earlier, the relationship is likely influenced by other 

weather factors than have not been analysed – such as inversions. Some attempts will 

be made to do this, but good data are simply not available. They do not account for the 

secondary variations that must occur for ‘colder’ versus ‘warmer’ winters.  

B8.1  Auckland 

Some preliminary results for Auckland are less encouraging, but this is due to several 

specific factors where Auckland is different from other New Zealand cities: (1) 

Auckland is geographically and meteorologically more complex than Christchurch, (2) 
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PM10 concentrations and the number of exceedences in Auckland are not as great, (3) 

exceedences in Auckland occur not only due to home heating, but also a significant 

number occur on moderately – or even very – windy days and are thought to be due to 

dust and sea spray, and (4) in Auckland a principal contributor is vehicle emissions 

rather than the home heating emissions that dominate in Christchurch. 

The ultimate aim of this work is to try to incorporate future predictions of New 

Zealand weather from climate models and assess what might be the effects on air 

quality for several years into the future. 

B8.2 Speculation 

Given the results shown in Figures B16, B17 and B18, it is tempting to conclude that 

there is evidence of a systemic reduction in PM10 emissions in the Christchurch 

airshed. The data may well indicate this, but the results need to be interpreted with 

caution, since (a) there is substantial variability and the statistical significance of the 

relationship has not been calculated, (b) the weather relationships are crude, omitting 

important factors such as inversion extent and strength, and (c) some secondary 

drivers have not been accounted for, such as fuel prices or particularly cold, or warm, 

periods. 
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Appendix C: Detailed report on the complex regression analysis of 
    PM10 and weather 

C1 Introduction 

This appendix serves as an elaboration of the analysis presented in Section 5 of the 

main report. The following section provides a detailed step by step overview of the 

methodology used, followed by a schematic presentation of the methodology in 

Section C2. The final section presents additional figures which were not incorporated 

in the main report. 

C2 Detailed overview of methodology (step by step) 

1. Calculation of evening averages of PM10 and weather variables (5 pm – 12 

am) from hourly data. 

2. Transformation of PM10 concentrations using the natural logarithm (loge) and 

of wind speed using the square root (sqrt). 

3. Creation of subsets of loge PM10 and meteorological variables (sqrt wind 

speed, temperature at 1m, temperature difference between 1m and 10m) for 

each year. 

4. Separation of each year into summer and winter subsets (November – April 

and May – October, respectively). 

5. Regression of loge PM10 against temperature for each seasonal subset (Figure 

C1). 

6. Removal of correlation via recalculation of loge PM10 values through 

application of following formula: 

corr. loge PM10 = (((loge PM – (a + b · TEMP)) / 2) · √3)) + avg. PM 

 with corr. loge PM = natural logarithm of temperature corrected PM10 

concentration, loge PM = natural logarithm of raw PM10 concentrations, 

TEMP = 1m air temperature, avg. PM = mean raw PM10 concentration for 
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each season, a = intercept of the calculated regression and b = slope of the 

calculated regression. 

7. Rejoining of seasonal subsets into a complete series (Figures C2 and C3). 

8. Removal of remaining temperature correlation by repeating step 6 (Figures 5.3 

and C4). 

9. Multiple linear regression using temperature corrected loge PM10 as dependent 

variable and square root wind speed and temperature difference as 

independent variables. 

10. Anti-log of observed and predicted values and calculation of residuals 

(observed minus predicted). 

11. Adding of residuals to overall mean of temperature corrected PM10 to produce 

adjusted series (Figure C5). 

12. Application of moving average filter with a window of 365 days for 2 

iterations (Figure 5.4). 

13. Creation of annual bar graphs for comparison with results from other 

techniques (Figures C6, C7 and C8). 
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2. Calculate evening averages (5pm – 12am) from hourly data.

1. Transform PM10 concentrations using the 
natural logarithm (loge).

1. Transform wind speed using the square root 
(sqrt).

3. Create subsets for each year and split into summer (November-April) and 
winter halves (May-October).

4. Linear regression of loge PM10 against temperature and subsequent removal 
of dependency for each subset.

5. Rejoin subsets and remove remaining dependency by repeating step 4.

6. Multiple linear regression using temperature corrected loge PM10 as 
dependent variable and sqrt WS and TDIFF as independent variables.

7. Anti-log observed and predicted values and create residuals which are added 
to overall mean of temperature corrected PM10 series.

8. Application of moving average filter to adjusted and raw PM10 series with a 
window of 365 days for 2 iterations.
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2. Calculate evening averages (5pm – 12am) from hourly data.

1. Transform PM10 concentrations using the 
natural logarithm (loge).

1. Transform wind speed using the square root 
(sqrt).

3. Create subsets for each year and split into summer (November-April) and 
winter halves (May-October).

4. Linear regression of loge PM10 against temperature and subsequent removal 
of dependency for each subset.

5. Rejoin subsets and remove remaining dependency by repeating step 4.

6. Multiple linear regression using temperature corrected loge PM10 as 
dependent variable and sqrt WS and TDIFF as independent variables.

7. Anti-log observed and predicted values and create residuals which are added 
to overall mean of temperature corrected PM10 series.

8. Application of moving average filter to adjusted and raw PM10 series with a 
window of 365 days for 2 iterations.
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C4 Figures displaying results (as referred to in Section 5 of the main report) 
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Figure C1: Loge PM10 as a function of temperature at Coles Place, St. Albans in a) winter, and b) 
summer 1999. 
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Figure C2: Scatter plot of rejoined corrected time series for 1999-2006 showing remaining 
temperature dependency. 
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Figure C3: Raw time series of PM10 concentrations for Coles Place, St Albans (1999 – 2006). 
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Figure C4: Temperature corrected time series of PM10 concentrations for Coles Place, St Albans 
(1999 – 2006). 
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Figure C5: Meteorologically adjusted time series of PM10 concentrations for Coles Place, St 
Albans (1999 – 2006). 
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Figure C6: Box plot of the meteorologically adjusted time series of PM10 concentrations showing 
the median and 25% - 75% percentiles for each year. 
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Figure C7: Box plot of the meteorologically adjusted time series of PM10 concentrations showing 
the median and 25% - 75% percentiles for each winter only (May – August). 
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Figure C8: Box plot of the final adjusted times series of PM10 concentrations showing the mean 
and standard deviation for each winter only (May – August). 

 

 

 


