

Predicting air pollution – applications of dispersion modelling to NES implementation

Air Quality Management Workshop Meteorological Society of NZ

Neil Gimson

Kingett Mitchell Ltd

University of Canterbury - 20 November 2006

Models to complement monitoring

Filling in the Gaps –

From a handful of monitoring sites, to $\rightarrow \rightarrow \rightarrow$

(Modelled max. NO₂ in Auckland)

Air Quality Science + Applications

- Fundamental Science
 - Assessing model performance
 - Validation comparison with observations
 - Complex geography and meteorology of New Zealand
 - Dispersion / chemistry in the urban boundary layer
 - Develop trust in model; use to predict pollution levels where data are sparse / absent
 - Watch this space ... (i.e. next talk)

- Application to air quality management in NZ
 - Standard for PM₁₀ (50µg/m³ 24-hour avge.)
 - Is it being attained now?
 - Will it be attained by 2013?
 - What will happen in the interim (SLiP)?
 - dependence on emissions and meteorology

The Straight-Line Path (SLiP)

Straight-Line Path to NES Compliance

(e.g. 24-hour average, 2nd-highest)

Start-point of SLiP = ??

- Current / historical observed PM₁₀ levels
- Are they the worst possible, if record is short? worst-case meteorology
- Could PM₁₀ levels be worse away from monitoring site?
 - or in general, what might PM₁₀ levels be like elsewhere?

End-point of SLiP = 50 μ g/m³

- What changes in emissions are needed to attain this?
 - changes according to source-type

Can use dispersion models to help answer these questions (so long as they perform OK!)

Case 1 - Masterton

- TAPM model: winter PM₁₀ max. 2003
- Model performance good
- Max modelled PM₁₀ located near monitoring site
- Area of exceedence of 50 µg/m³ OK

Case 2 – Napier / Hastings

- TAPM model: winter PM₁₀ max. 2004
- Model performance good
- BUT
 - max. conc. not at location of AQ sites
 - AQ worse in 2005 and 2006
- Should start-point of SLiP be taken from model results in preference to observations?

Summary

- Non-technical introduction to dispersion modelling
- Focus on use of modelling in implementation of NES e.g. SLiP determination
- Other uses:
 - Assistance in siting of monitors
 - Population exposure and public-health effects
 - Testing whether pollution-mitigation options would 'work'
 - Back-calculation to assess source strength
- Warnings:
 - Just an approximation to reality don't expect miracles
 - Interpret results carefully
 - Don't give model results priority over observations