# Validating an ageing method for the Antarctic toothfish (Dissostichus mawsoni)



## The Ross Sea fishery for Antarctic toothfish

- A longline fishery occurring from January to May in the northern Ross Sea (stippled yellow area)
- The fishery began in 1998 with landings of 41 t; landings in the 2002 season were 1358 t



# The aim of this research

To validate an ageing method for Antarctic toothfish using newly available data from juvenile and adult fish

## Why is age determination important?

- Knowledge of age is essential for the rational management of any fish species
- A fast-growing, short-lived species can generally be exploited at a higher rate than a slow-growing, long-lived species
- Fish are usually aged by counting translucent zones in transverse sections through their crystalline otoliths ("ear stones"), as shown for a
- One zone is generally formed each year, but as this is not always the case it is essential to validate zone periodicity

### Data from juvenile fish

6-year-old hoki

 Otoliths were available from a sample of juvenile toothfish exhibiting four distinct length modes at 14,

28, 37, and 46 cm (postulated to be consecutive year classes), from a South Shetland Islands trawl survey

- Otolith zones were counted without reference to fish length
- Counts of 0, 1, 2, and 3 zones were recorded, and the count incremented by 1 in otoliths from each consecutive mode
- Otolith weight was linearly related to estimated age (and such a relationship holds for most correctly aged fish species)
- → Length modes represent year classes (aged 0.5, 1.5, 2.5, and 3.5 years, respectively), and one zone forms annually in juvenile otoliths





#### Data from recaptured tagged fish

- Antarctic toothfish have been tagged and released at McMurdo Sound in most years since 1972
  - Many had been injected with the antibiotic oxytetracycline, which causes fluorescence in the otolith material deposited at the time of the injection
    - Otoliths were available from six injected fish recaptured at least a year after tagging
      - The pictured example shows otolith sections from a fish tagged in November 1987 and recaptured in November 1994



- 7 zones had formed outside the fluorescent marker
  - → One translucent zone is formed annually in the otoliths of adult Antarctic toothfish, so counting these zones is a valid method to age this species

## Antarctic toothfish growth

• Growth curves calculated from fish aged 4-39 years from the longline catch. On average, females (pink) reach a larger size-at-age than males (blue)



- The estimated juvenile lengthsat-age (open circles) match well with the adult growth curves
- Growth rates
- by the six tagged fish appear "below average", though they match more closely a curve (red) calculated from unsexed McMurdo Sound fish only
- → Do Antarctic toothfish in McMurdo Sound have a slightly slower growth rate than those in the northern Ross Sea?

## Age composition of the fishery

The NZ longline catch appears to

comprise mainly adult fish aged 8 to 25 years

#### Acknowledgements

- Dr Chris Jones (Antarctic Marine Living Resources Program, National Marine Fisheries Service, USA) for the otoliths from the 2001 Shetlands
  - trawl survey Funding provided by: New Zealand Ministry of Fisheries

Office of Polar Programs, National Science Foundation, USA National Institute of Water and Atmospheric Research Ltd., New Zealand



#### **Peter Horn & Colin Sutton**