

Outline

- Focus on agricultural catchments
- Targeting key pollutant sources and pathways
 - How does water flow through the landscape and enter the lake?
- Source control -Farm BMPs
- Interception and attenuation
 - How & where are water and pollutants generated and transported?
 - Targeting hotspots and priority pathways
 - Key attenuation processes
 - Valuing natural attenuation assets
 - Toolbox of attenuation options

Source control -Farm BMPs

- Effluent management
- Nutrient management
- Grazing management
- Reducing hydrological connectivity

Effluent management

- Land irrigation
 - Proper application rates
 - Appropriate irrigator type/speed
 - Low-rate pod sprinklers (K-line)
 - Deferred irrigation
 - Storage during wet weather
- Improved pond treatment
 - Add constructed wetlands
 - Advanced pond systems

Grazing & nutrient management

- Nutrient budgeting —soil tests
- Winter-off stock (?)
- Reduce winter fertiliser
- Nitrification inhibitors
 - Applied to pasture (or fed)
- Feed & stand-off pads
- Wintering barns/Herd homes
- Convert to organics (?)
- Reduce grazing & cropping

Grazing management & reducing connectivity

"Put water and shade at the top of the paddock and stock will graze more evenly and put on more weight"

- Livestock exclusion from waterways, wetlands and riparian zones
- Bridges at crossings
- Locating gates, troughs and races away from high run-off risk areas
- Race and track run-off diverted to swales

Race and track run-off diverted to swales

Runoff spills onto pasture which acts like à filter to

remove pollutants

A deepened settling and filtering area for runoff

Interception and attenuation

- What is attenuation?
 - permanent loss or temporary storage between generation site and a water body
- Understand how water flows through our landscape
 - Target key pollutant sources and pathways
 - Best bang for buck
 - Identify natural attenuation assets
 - Protect, restore, rehabilitate
 - Identify other interception and attenuation opportunities

Attenuation processes

Permanent loss or temporary storage between generation site and a water body

physical

chemical

biological

What are main runoff pathways?

- surface runoff
 - infiltration excess
 - saturation excess
- subsurface
 - groundwater
 - seepage
 - matrix flow slow
 - preferential flow –fast e.g. tile drains

Where can I intercept them?

- Opportunities
 - close to source
 - along pathways
 - bottom of catchment
- Ease of interception
 - drains > wetland > surfacerunoff > subsurface runoff> groundwater

Key interception & attenuation options

Attenuation tool	Intercepted flowpath(s)	Scale(s)	Likely applicability	Target pollutants	Landscape fit	Knowledge level	Efficacy	Cost
strip	,	paddock	М	SS, P, N, bugs	L	М	M-L	\$
buffer	surface runoff (sheet flow) + subsurface flow	paddock	Н	SS, P, N	U	Н	L	\$\$
vegetated drains	surface runoff + subsurface flows in surface drains	paddock, farm	М	SS, N, P	U	L	М	\$-\$\$
Managed or							AA 1	<u>,</u>
controlled drainage	http://www.niwascience.co.nz/ncwr/tools then look for:						M-L	\$
Sediment							Н	
traps, dams and ponds								\$\$
Aquatic	-	riich loo	K IUI.					
plant/algae	Pastoral 21: Stocktake of diffuse pollution						M-L	\$\$\$
uptake and harvesting	r asturar 21	. Stucktaki	e or uiti	use po	JIIUUI	JII		
Natural		attanuati	on tools	7				
seepage wetlands	attenuation tools						M-H	\$
Floodplain wetlands	floods	farm, catchment	H-L	SS, P, N	U/L	L	M-L	\$-\$\$\$
wetlands	stream flow, tile drain flow, surface drains	paddock, farm, catchment	М	SS, N	U	Н	М	\$\$-\$\$\$
Floating wetlands	streams, ponds, lakes	catchment	L	N, P	L	M-L	M	\$\$\$
	2. subsurface drains (WCF)	paddock	M-L	N	L	М	н	\$\$
Reactive materials	Metiands A surface runoff	1. catchment 2. paddock 3. paddock, farm, catchment 4. paddock 5. paddock	M-L	P, (zeolite also K and NH ₄)	L	L	M-L	\$\$-\$\$\$ (close to material source)

Filter strips

- Grass filter strips
 - Managed band of <u>dense</u> grass
 - Focus = Surface run-off
 - Deposition, infiltration, filtering
 - >80% removal SS & particulate N & P
 - > 50% removal dissolved N & P
 - Channelised-flow -Grass hedges

General grass filter guidelines

Riparian buffer

- Managed band of shrubs & trees along streambank
- Surface & shallow subsurface-flow
 - Deposition, infiltration, filtering
 - Plant uptake
 - Denitrification
 - Adsorption
- Streambank protection
 - Biodiverstiy
 - Shading
 - Landscape aesthetics

Combination riparian buffer (Rolls Royce)

Rotopiko Lakes

Riparian reconnection

Natural wetlands

- Seepage wetlands
 - Denitrification
 - Nutrient uptake
 - Deposition
 - Adsorption
- Riverine wetlands
 - Flood attenuation

Northland

Constructed wetlands

- Drainage systems
- Flow confluences
- Bottom of catchment
 - 1-5% of catchment
 - SS & PP

Interception of farm drainage

Lake Okaro wetlands

Aquatic plant harvesting

- Harvest to maintain active uptake
- Water cress
 - Potential markets

Preliminary Results

Mean nitrate and disssolved reactive phosphorus concentrations for the inflow and outflows (n = 5).

Reactive materials/filters

- Treatment walls
 - Sawdust incorporated in soil
- Porous reactive filters
 - Woodchip or bark
 - P-sorbing media
- Additives to wetland and riparian soils

Reducing external nutrient loads

- Selecting the right tool for the job
 - 1. set catchment targets
 - 2. understand how water moves through catchment
 - prioritise flowpaths
 - 3. promote appropriate farming BMPs
 - 4. safeguard existing wetlands –attenuation assets
 - 5. evaluate relevance & cost-effectiveness of additional attenuation tools —look for multiple benefits

Putting it all together

There are many opportunities to use native plants on farms for different purposes. Here is a range of ways in which native plants can be incorporated into a working farm landscape.

