Pressures on Shallow Lakes

Marc Schallenberg (University of Otago) Brian Sorrell (NIWA Christchurch) David Hamilton (Waikato University)

Schallenberg & Sorrell, NZJMFR (in press)

Flipping Lakes - between stable ecological states

How and Why Flipping Lakes Flip...

Trophic state

Nutrient inputs

 Netherlands Sweden

• Denmark

• Australia

- 1. Tomahawk Lagoon #2, Otago (Mitchell et al. 1988; Mitchell 1989)
- 2. Hawkesbury Lagoon, Otago (Wass & Mitchell 1996)
- 3. Lake Ellesmere / Te Waihora, Canterbury (Hughes et al. 1974; Gerbeaux 1993
- 4. Lake Omapere, Northland (Howard-Williams & Kelly 2003)

Pressures Related to Flipping in Shallow Lakes:

Definition of a Flipping Lake:

...shows a rapid, visible shift between:

1) a clear water state characterised by the presence of submerged macrophyte beds

and

2) a turbid state characterised by a lack of, or distinct reduction in, macrophyte biomass.

NB: seasonal variation in macrophyte cover not considered a regime shift

Is catchment land use related to the likelihood of flipping?

Is the presence of introduced macrophyte species correlated with flipping in lakes?

-data from NIWA Biodata Information Database -analysis based on presence/absence

• 53% of flipping lakes had *E.densa* present
• 13% of non-flipping lakes had *E. densa* present *P*< 0.001

South African oxygen weed (*Lagarosiphon major*) Canadian pondweed (*Elodea canadensis*) Hornwort (*Ceratophyllum demersum*)

Non-significant

Is the presence of coarse fish species correlated with flipping in lakes?

-herbivorous and benthivorous fish taxa -data from NIWA Freshwater Fish Database -analysis based on presence/absence

Koi carp

Rudd

Brown bullhead catfish

Is the presence of coarse fish species correlated with flipping in lakes?

Catfish ****

Goldfish ****

Rudd ***

**** P < 0.0001 *** P < 0.001 ** P < 0.01 * P < 0.05

Tench **

Koi carp *

Are the effects of co-occurring coarse fish species worse?

Percent of lakes in

each fish class

Conclusions:

- 1. Flipping between alternative stable states is common in NZ shallow lakes
- 2. Flipping occurs in lakes from Otago to Northland, lakes up to 20m deep and lakes which have a mean annual air temperature from 8.5°C to 16.5 °C
- 3. The conversion of forest to pasture probably induces flips
- 4. The presence of *Egeria densa* probably induces flips
- 5. The introduction of 5 introduced fish taxa probably induces flips
- 6. The co-occurrence of coarse fish species is more strongly related to flipping

 supports findings of the complementary effects of coarse
 fish taxa on turbidity (Rowe 2007)
- 7. These results, if confirmed by experiments, have obvious, direct implications for shallow lake conservation, management and restoration
- 8. Prior to pastoral farming, regime shifting was probably very rare in NZ

Caveat:

Results are correlational – further research is required to confirm inferred effects

Acknowledgments:

J. Adams, G. Barnes, N. Deans, J. Goodman, M. De Winton, J. Dyer, M. Harper, D. Hamilton, J. Hayes, B. Hicks, R. Hoetjes, D. Kelly, I. Maxwell, D. McKenzie, C. Mitchell, K. Murray, N. Norton, P. Novis, W. Paul, J. Phillips, R. Pitkethley, D. Rowe, M. Rutledge, E. Simpson, R. Smith, A. Stancliff, T. Stephens, R. Storey, R. Strickland, P. Teal, J. Ward and R. Wass for information on lakes that have flipped.

G. Hay for assistance with producing the map

M. De Winton, C. Howard-Williams, T. Downs for comments and suggestions

This study was funded by the Foundation for Research, Science and Technology

Thank you for listening

PCA 1									
-2		-1				0		1	2
Γ									All NRSLs
	Ø	\mathbf{O}		0	00	\bigcirc	$\bigcirc \bigcirc \bigcirc$	0	All RSLs
	0	ഠത	00000	0	0	0	00		Carassius auratus (goldfish) 18
	0	ഠയ	• •	0	0	0	00	0	Ameiurus nebulosus (catfish) 15
	0	0	00	0	o o	0	0	0	Scardinius erythrophthalamus (rudd) 13
	0		0	0	0	ο	0	О	Tinca tinca (tench) 7
		0	0 0	0		0 0			<i>Hypophthalmichthys molitrix</i> (silver carp) 1 <i>Cyprinus carpio</i> (koi carp) 5
		0			0				Leuciscus idus (orfe) 1 Ctenopharyngodon idella (grass carp) 1
	0	0000		0	o o	0	000	0	All RSLs
	0	ഠത	ഠ താത	0	0	0	00	0	Egeria densa 17
		00	ο			ο			Ceratophyllum demersum (hornwort) 4
		00	ο	0					Elodea canadensis (Canadian pondweed) 4
		0	0 0						Potamogeton crispus (curled pondweed) 3
				0					Lagarosiphon major 1
							0		Other 1

PCA – Catchment land use

\bigcirc Non-RSLs

- RSLs alternating
- RSLs macro-to-turbid
- RSLs clear-to-macro

Is land use related to regime shifting in shallow lakes?

Can we predict regime shifting from catchment land use?

Discrimina	nt Analysis	Predicted grou (number	Actual group totals	
Regime sl = %pasture	hift (Y/N) = + %forest	Non-regime shift	Regime shift	
Actual group membership	Non-regime shift	48	9	57
	Regime shift	11	26	37
Predicted grou	p totals	59	35	

78% correct classification; Wilkes Lambda $F_{2,91}$ = 22.2, P < 0.0001

Exotic taxa	Occurrence in RSLs (in % of RSLs)	Occurrence in Non- RSLs (in % of Non- RSLs)	X ²	Р
Egeria densa	17 (53)	7 (13)	16.11	<i>P</i> < 0.001
<i>Elodea</i> <i>canadensis</i> (Canadian pondweed)	4 (13)	7 (13)	0.004	n/s
<i>Ceratophyllum demersum</i> (hornwort)	4 (13)	6 (11)	0.04	n/s
Potamogeton crispus (curled pondweed)	3 (9)	5 (9)	0.0003	n/s
Lagarosiphon major	1 (3)	4 (7)	0.67	n/s
Other	1 (3)	6 (11)	1.71	n/s

Exotic taxa	Occurrence in RSLs (in % of RSLs)	Occurrence in Non-RSLs (in % of Non- RSLs)	X ²	Р
<i>Ameiurus nebulosus</i> (catfish)	15 (50)	0 (0)	33.56	<i>P</i> < 0.001
<i>Carassius auratus</i> (goldfish)	18 (60)	6 (12)	22.82	<i>P</i> < 0.001
<i>Scardinius erythrophthalmus</i> (rudd)	13 (43)	6 (12)	11.52	<i>P</i> < 0.001
Tinca tinca (tench)	7 (23)	2 (4)	7.94	0.005 > P > 0.001
<i>Cyprinus carpio</i> (koi carp)	5 (17)	1 (2)	6.58	0.025 > P > 0.01
<i>Hypophthalmichthys</i> <i>molitrix</i> (silver carp)	1 (3)	0 (0)	n/a	
<i>Ctenopharyngodon</i> <i>idella</i> (grass carp)	1 (3)	0 (0)	n/a	
Leuciscus idus (orfe)	1 (3)	0 (0)	n/a	