Framework for restoration decision making

John Quinn NIWA Hamilton
Marc Schallenberg Otago University
David Hamilton University of Waikato

Session structure

- Recap on key science messages
 - NZ Freshwater Sciences Workshop
 - Earlier today: Shallow lakes are complex but much valued systems
- Restoration framework suggestions
 - Lake Hakanoa conceptual model
- Initial discussion (more at end of day)
 - Shallow lake values
 - Obstacles to restoration
 - Innovations to make progress

Shallow lakes have high values

Intrinsic Values

- Native fisheries
 - Eels
 - Mussels
 - Inanga
 - Kokopu
- Native plants
 - Lake edge and submerged
 - Riparian wetlands/forests
- Native birds
- Aesthetics
 - Many naturally tea coloured

Utility Values

- Flood control
- Land drainage
- Water supply
- Recreation
 - Boating & Swimming
 - Fishing & game bird shooting
- Waste assimilation
 - Sewage & stormwater
 - Farm runoff
 - Mine wastewater

Stressors & shallow "lake flipping"

- 1. Degraded by multiple stressors
 - Nutrients (N & P) + sediment + exotic plants + exotic fish
- 2. Exist in alternative semi-stable states
 - A. Vegetated bed & clear water
 - B. No plants & low clarity
 - Many have "flipped" from A to B
 - Hard shift from B to A

Lake degradation & equity

- Private land owner wealth increase at public water owner expense
 - Degradation of public lake ecosystem services
 - What is equitable balance?
- Rural and urban water sensitive designs can reduce nutrient and sediment loads
 - Filter strips, nutrient budgets & management,
 livestock mgmt, treatment wetlands, effluent and
 stormwater treatment/diversion, land use change...

Lakebed sediments

- Store Phosphorus from past enrichment
 - Recycled within lake as "in-lake P load"
 - Often need to manage after controls on catchment inputs in place
- In-lake P controls
 - capping, bottom water oxygen control...
 - show promise in deeper Te Arawa lakes (e.g., Okaro)

Exotic plants

- Key stressors
 - Plant-beds prone to collapse
 - But often better than no plants
 - Best to prevent introduction
 - Boat access, weed containment areas new boat ramps...
 - Education to stop spread by people (e.g., aquarium releases)

Exotic coarse fish

- Promote flipping to turbid/no plants state 2
 - koi, catfish, goldfish, tench
 - Disturb sediments & up-root plants
 - perch (and juveniles of above species)
 - Eat zooplankton that graze algae
 - Increases blooms and reduces water clarity
 - rudd
 - eat native plants

Conflicting community values?

- Coarse fishing VS clear water/plants
 - Designate coarse fish lakes?
 - Limit to 1 species/lake?
 - Ban coarse fishing?
- Yachting VS submerged exotic plants/clear water
- Clear water/no algal blooms VS intensive agriculture (without strong use of Water Sensitive Design tools)
 - Accord with farmers and urban authorities?
 - Tighter land use controls?
 - Nutrient cap and trade?

Much knowledge exists

- But shallow lakes understood less than deep
 - Models developed for deep lakes need adaptation to shallow lakes
- Lake restoration/rehabilitation
 - Complicated & complex
 - Synthesize catchment and lake knowledge
 - framework to support deliberation, consensus building and decisions
 - Case studies with monitoring
 - Fact sheets/ web site
 - Conceptual linkage models

Restoration Framework?

Community values

Lake state/trends

Lake attributes
-depth, biota, chemistry etc

Stressors
External & internal
-contaminants, invasive sp., etc

Restoration tools
Catchment & in lake

Key questions in lake restoration decision making

- What are the community values?
- Restoration goals?
 - e.g., aesthetic, recreational, biodiversity, water quality ...
 - Are the public expectations achievable?
 - Are there contradictions in restoration goals?
 - e.g., Desire to have clear water but with no aquatic plants
- Current lake condition?
- What caused decline in lake condition?
- Nutrient status and nutrient and sediment loading?
- Constraints to effective management?
 - Economic, institutional, legislative, ecological

Restoration prioritisation factors 1. biophysical

- Lake size
 - Smaller systems are more amenable to restoration
- Lake depth
 - Deeper lakes are better candidates
 - Large, shallow lakes are very difficult to restore
- Wind fetch
 - A large wind fetch increases resuspension of bottom sediments
 - Small, deep lakes with a small wind fetch or wind breaks are better candidates for restoration
- Presence of exotic fish
 - Elimination necessary for most goals
 - If unacceptable/unachievable, then fewer species the better
 - Koi, rudd, catfish, tench and goldfish are particularly problematic
 - Likelihood of reintroduction must be considered
 - accidental and intentional

Key factors in lake selection 2. Human

- Catchment residents
 - Ideally a small number of landowners or a motivated care group
 - Preferably some Crown ownership or legal protection of land
 - Catchment residents willing to modify land practices to reduce nutrient inputs.
 - Studies suggest nutrient reductions of >50% are required
 - Catchment residents that are prepared to be involved in goal setting
- Regulations
 - Existing regulations providing some protection
- Sustainability
 - Existing partners with long-term commitment to the project
- Reliable funding sources

Key considerations in planning

- As a landowner or manager, seek information on the ecology of the site, area, and region
 - Scientists are eager to help
- Set clear achievable objectives that are appropriate to the site and its use
- Plan good science around the restoration to determine the effects of actions
- Consider whether it is possible to select an experimental lake for testing new actions on a small scale

Lake Hakanoa conceptual model

- Case study
- WDC asked NIWA to help evaluate restoration actions

Hudson et al. 2008. Review of options for improving the condition of Lake Hakanoa NIWA client report HAM2008-067, 35 p.

Hakanoa Background

- Shallow (av. 1.65 m)
- Bed: soft, organic-rich silt
 - Wave-disturbed
- urban-fringe
- riverine lake (58 ha)
 - Waikato connects at high flow
- Remnant wetlands (S & E)
- Management:
 - DoC, Waikato DC & EW

Hakanoa decline

- Pre-1970: Surface-reaching Egeria
- 1973 Plants declining
 - Herbicide weed control
 - Eutrophication
- 1983: clarity = 0.25 m, hyper-eutrophic, *BG* bloom
- 1988-1991:
 - No plants; clarity = 0.23 m
- 2003-05:
 - Cyanobacteria blooms (Anabaena) → Health warnings & odours
 - Occasional fish kills
- 2002-2008, positive trends

Por Carp

Vant & Pridmore 1981; Davies-Colley 1983; Champion et al. 1993; EW 2003, 2005; EW unpub data

2002-08: improving WQ

Hakanoa Community Values

- Values (Waikato DC)
 - Recreation
 - Yachting
 - Open water
 - Clear water, blue hue
 - No blooms/odours
 - Walkway (\$20K upgrade)
 - Aesthetics
 - Coarse fishing
 - Mahinga kai] Tainui
 - Biodiversity

Hakanoa External Drivers

Exchange with Waikato R

- •Flushing (+)
- •Exotic fish & plant source (-)

Need linkage model

- Move beyond lists of values and stresses
- Causal linkage models
 - Graphic representation of systems
 - Mimic human logical thinking

Linkages: Biota to Values

Value conflicts:

Coarse fish = good guys for anglers; bad guys for biodiversity, mahinga kai and aesthetics

Hakanoa Rehabilitation Conceptual Model

Hakanoa – eliminated tools

Model implications

- Community's values conflict
 - Coarse fishing VS native biodiversity
 - Yachts, plants VS water clarity
 - More debate needed to set agreed goals
- Exotic coarse fish constrain options
 - Resuspend sediment and nutrients
 - Stop revegetation
 - Fish eradication unlikely?
 - River & angler reintroductions
 - Unlikely native plants will re-establish
- Slightly clearer lake with less blooms & restored riparian vegetation may be compromise goal?
 - Recent trends suggest this is attainable

Conclusions Conceptual models

- Summarise
 - Existing knowledge
 - Better basis for actions
 - Ecosystem complexity
 - Value conflicts
 - Knowledge gaps
- Key building block for Restoration
- Generic models for lake types may provide useful restoration frameworks to be adapted
 - Shallow, deep, dune lakes, peat lakes, coastal lagoons etc
 - Some will be simpler
 - Dune lakes
 - No river connection
 - Less exotic fish/easier to control

Restoration Framework: Who does what?

Key elements for changing practice

SLIM = Social Learning for Integrated Management and sustainable use of water Ison & Watson 2007: Ecology & Society 12 (1) 21

Questions to move forward

- 1. Agree on shallow lake values?
 - Variation between lake types/sizes?
- 2. Obstacles to restoration of these values?
 - Science & knowledge integration
 - Institutional
 - Legislation
 - Value conflicts
- 3. Overcoming obstacles?